Page 72 - 《应用声学》2022年第1期
P. 72

68                                                                                   2022 年 1 月


                                                 0             并且在复杂水声信道下,所提方法能够取得比在
                   20                                          AWGN 信道下更高的信噪比增益。湖上实验结果
                                                 -5
                   15                                          显示,所提方法能够将系统误码率由传统分离译码
                                                 -10           的 1.9×10 −2  降低为 4.0×10 −4 。当传输图像序列时,
                  ௑ᫎ/s  10                       -15  ॆʷӑη᥋־ऄ/dB  所提方法对全部接收信号均实现了无误码通信,而


                    5                                          传统分离译码的误码率仍然为3.7×10               −3 。
                                                 -20
                                                                   在后续的研究当中,一方面,考虑继续细化分
                                                 -25           析译码参数 α 对译码性能的影响,研究效率和精度
                   -20   0    20   40   60
                                ኀՂᫎᬦ                           更高的参数选取方法,进一步提高水声通信系统的
                           (a) ௑ԫη᥋фѤ־ऄͥᝠፇ౧
                                                               可靠性;另一方面,进一步优化信源先验信息的提取
                   0.6
                                                               方法,提高信源符号间相关性的利用效率。
                   0.5
                   0.4
                 ࣨए  0.3                                                      参 考 文        献

                   0.2
                                                                 [1] Steele R, Goodman D J. Detection and selective smooth-
                   0.1
                                                                   ing of transmission errors in linear PCM[J]. Bell System
                   0                                               Technical Journal, 1977, 56(3): 399–409.
                    -20-10 0  10  20  30  40  50  60  70  80
                                  ኀՂᫎᬦ                           [2] Sayood K, Borkenhagen J C. Use of residual redundancy
                                                                   in the design of joint source/channel coders[J]. IEEE
                           (b) ᅯ௑η᥋фѤ־ऄͥᝠፇ౧
                                                                   Transactions on Communications, 1991, 39(6): 838–846.
                         图 10  实测信道冲击响应                          [3] Demir N, Sayood K. Joint source/channel coding for vari-
                  Fig. 10 Measured channel impulse response        able length codes[C]//Proceedings DCC’98 Data Com-
                                                                   pression Conference. Snowbird, USA, 1998: 139–148.
                                                                 [4] Park M, Miller D J. Joint source-channel decoding for
                                                                   variable-length encoded data by exact and approximate
                                                                   MAP sequence estimation[J]. IEEE Transactions on Com-
                                                                   munications, 2000, 48(1): 1–6.
                                                                 [5] Murad A H, Fuja T E. Joint source-channel decoding
                                                                   of variable-length encoded sources[C]//1998 Information
                                                                   Theory Workshop. Killarney, Ireland, 1998: 94–95.
                                                                 [6] Lakovic K, Villasenor J, Wesel R. Robust joint Huffman
                                                                   and convolutional decoding[C]//Gateway to 21st Century
                                                                   Communications Village.  VTC 1999-Fall.  IEEE VTS
                  (a) ͜ፒѬሏឋᆊፇ౧          (b) ਫ਼ଢவขឋᆊፇ౧
                                                                   50th Vehicular Technology Conference. Amsterdam, The
                             图 11  译码结果                            Netherlands, 1999, 5: 2551–2555.
                         Fig. 11 Decoding results                [7] Bauer R, Hagenauer J. Iterative source/channel-decoding
                                                                   using reversible variable length codes[C]//Proceedings
                                                                   DCC 2000. Data Compression Conference. IEEE, Snow-
             5 结论
                                                                   bird, UT, USA, 2000: 93–102.
                                                                 [8] Berrou C, Glavieux A, Thitimajshima P. Near Shan-
                 本文根据 Polar 码的译码结构提出了一种基于                          non limit error-correcting coding and decoding: Turbo-
             Polar 码的水声通信信源信道联合译码方法。该方                             codes. 1[C]//Proceedings of ICC ’93-IEEE International
             法以信源状态转移关系为基础构建信源信道联合                                 Conference on Communications, Geneva, Switzerland,
                                                                   1993, 2: 1064–1070.
             译码网格图,在联合译码网格图上同时进行信源译
                                                                 [9] Gallager R. Low-density parity-check codes[J]. IRE Trans-
             码和信道译码,综合信源转移概率和信道转移概率                                actions on Information Theory, 1962, 8(1): 21–28.
             计算统一的后验概率,实现了信源译码和信道译码                             [10] Jeanne M, Carlach J C, Siohan P, et al. Source and joint
             的一体化联合优化。仿真结果表明,所提方法能够                                source-channel decoding of variable length codes[C]//2002
                                                                   IEEE International Conference on Communications. Con-
             利用信源残留冗余抵抗信道差错,在不降低通信速
                                                                   ference Proceedings. ICC 2002. New York, USA, 2002, 2:
             率的情况下,取得优于传统分离译码的误码率性能,                               768–772.
   67   68   69   70   71   72   73   74   75   76   77