Page 20 - 《应用声学》2022年第4期
P. 20

518                                                                                  2022 年 7 月


             如表 2 所示,使用多特征向量约束的匹配场算法中,                           [7] Richardson A M, Nolte L W. A posteriori probability
             在估计拷贝场互谱矩阵时,随机多项式展开方法的                                source localization in an uncertain sound speed, deep
                                                                   ocean environment[J]. The Journal of the Acoustical So-
             时间开销不到蒙特卡洛统计方法的7%。
                                                                   ciety of America, 1999, 89(5): 2280–2284.
                                                                 [8] Byrne C L. A stable data-adaptive method for matched-
             表 2 多特征向量约束匹配场声源定位算法的时间开销                             field array processing in acoustic waveguides[J]. The Jour-
             Table 2 The time cost of the MV-EPC source            nal of the Acoustical Society of America, 1990, 87(6):
             localization algorithms                               2493–2502.
                                                                 [9] 杨坤德, 马远良. 基于扇区特征向量约束的稳健自适应匹配场
                 算法中互谱矩阵的          蒙特卡洛        随机多项式               处理器 [J]. 声学学报, 2006, 31(5): 399–409.
                    估计方法           统计方法          展开法               Yang Kunde, Ma Yuanliang. Robust adaptive matched
                                                                   field processing with sector eigenvector constraints[J].
                     时间/h           417.2        28.8
                                                                   Acta Acustica, 2006, 25(3): 243–257.
                                                                [10] Chandler H A, Feuillade C, Smith G B. Sector-focused
             3 结论                                                  processing for stabilized resolution of multiple acoustic
                                                                   sources[J]. The Journal of the Acoustical Society of Amer-
                                                                   ica, 1995, 97(4): 2159–2172.
                 本文提出了一种基于复声压随机多项式展开
                                                                [11] James K R, Dowling D R. A probability density func-
             的多特征向量约束不确定场声源定位方法。通过将                                tion method for acoustic field uncertainty analysis[J]. The
             随机声压表示成随机多项式展开的形式,提高了估                                Journal of the Acoustical Society of America, 2005, 118(5):
             计拷贝场复声压互谱矩阵的计算效率。在浅海、低                                2802–2810.
                                                                [12] James K R, Dowling D R. A method for approximat-
             频、海水声速存在起伏时,多特征向量约束的匹配
                                                                   ing acoustic-field-amplitude uncertainty caused by envi-
             场声源定位算法在定位性能 (定位准确率和输出峰                               ronmental uncertainties[J]. The Journal of the Acoustical
             均比)上优于线性匹配器和最小方差无失真匹配器,                               Society of America, 2008, 124(3): 1465–1476.
                                                                [13] James K R, Dowling D R. Pekeris waveguide comparisons
             算法在估计拷贝场复声压互谱矩阵时,与蒙特卡洛
                                                                   of methods for predicting acoustic field amplitude uncer-
             统计方法相比,使用随机多项式展开方法会使得算                                tainty caused by a spatially uniform environmental un-
             法在定位性能略逊于前者,但计算效率比之提升一                                certainty(L)[J]. The Journal of the Acoustical Society of
             个数量级。                                                 America, 2011, 129(2): 589–592.
                                                                [14] Xiu D, Karniadakis G E. The Wiener-Askey polynomial
                                                                   chaos for stochastic differential equations[J]. SIAM Jour-
                                                                   nal on Scientific Computing, 2002, 24(2): 619–644.
                            参 考     文   献                       [15] Creamer D B. On closure schemes for polynomial chaos
                                                                   expansions of stochastic differential equations[J]. Waves
              [1] 杨坤德. 水声阵列信号的匹配场处理 [M]. 西安: 西北工业大                 in Random and Complex Media, 2008, 18(2): 197–218.
                 学出版社, 2008: 165–166, 207.                      [16] Blatman G, Sudret B. Adaptive sparse polynomial chaos
              [2] Krolik J L, Hodgkiss W S. Matched field source localiza-  expansion based on least angle regression[J]. Journal of
                 tion in an uncertain environment using constraints based  Computational Physics, 2011, 230(6): 2345–2367.
                 on sound-speed perturbations[C]. Oceans, IEEE, 2002.  [17] Eldred M S. Recent advances in non-intrusive poly-
              [3] Shorey J A, Nolte L W, Krolik J L. Computationally effi-  nomial  chaos  and  stochastic  collocation  method
                 cient Monte Carlo estimation algorithms for matched field  for  uncertainty  analysis  and  design[C].  50 th
                 processing in uncertain ocean environments[J]. Journal of  AIAA/ASME/ASCE/AHS/ASC Structures, Structural
                 Computational Acoustics, 1994, 2(3): 285–314.     Dynamics, and Materials Conference, 2009.
              [4] Schmidt H, Baggeroer A B, et al. Environmentally toler-  [18] Ma X, Zabaras N. An adaptive high-dimensional stochas-
                 ant beamforming for high-resolution matched field pro-  tic model representation technique for the solution of
                 cessing: deterministic mismatch[J]. The Journal of the  stochastic partial differential equations[J]. Journal of
                 Acoustical Society of America, 1990, 88(4): 1851–1862.  Computational Physics, 2010, 229(10): 3884–3915.
              [5] Krolik J L. Matched-field minimum variance beamforming  [19] Hosder S, Walters R W, Balch M. Efficient sam-
                 in a random ocean channel[J]. The Journal of the Acous-  pling  for  non-intrusive  polynomial  chaos  applica-
                 tical Society of America, 1992, 92(3): 1408–1419.  tions with multiple uncertain input variables[C]. 48 th
              [6] Shorey J A, Nolte L W. Wideband optimal a posteri-  AIAA/ASME/ASCE/AHS/ASC Structures, Structural
                 ori probability source localization in an uncertain shal-  Dynamics, and Materials Conference, 2007.
                 low ocean environment[J]. The Journal of the Acoustical  [20] Augustin F, Gilg A, Paffrath M, et al. An accuracy com-
                 Society of America, 1998, 103(1): 355–361.        parison of polynomial chaos type methods for the propa-
   15   16   17   18   19   20   21   22   23   24   25