Page 131 - 《应用声学》2022年第5期
P. 131
第 41 卷 第 5 期 钟丽琴等: 水下流激孔腔噪声前馈有源控制实验研究 807
从图 6(d) 可以看到,正则化因子越小在腔内辅助监 [6] Samimy M, Debiasi M, Caraballo E, et al. Feedback
测点降噪邻近频段的抬升也会偏大。图6(c)则显示 control of subsonic cavity flows using reduced-order mod-
els[J]. Journal of Fluid Mechanics, 2007, 579(1): 315–346.
上游测点和误差点在流噪能量集中频段及其邻近
[7] Nagarajan K K, Singha S, Cordier L, et al. Open-loop
频段的降噪影响相似。β 越大,在目标降噪频段的降 control of cavity noise using proper orthogonal decompo-
噪量减少,但是对腔内测点的影响会减小,所以需要 sition reduced-order model[J]. Computers & Fluids, 2018,
合理选择β 均衡在误差点和辅助监测点的降噪。 160: 1–13.
[8] Yoo S P, Lee D Y. Time-delayed phase-control for sup-
3 结论 pression of the flow-induced noise from an open cavity[J].
Applied Acoustics, 2008, 69(3): 215–224.
[9] Yuan G, Jiang W, Hua H. Hydroacoustic analysis of open
本文通过实验研究了前馈 ANC 方法用于水下
cavity subsonic flow based on multiple parameter numer-
流激孔腔噪声抑制的效果,该方法在工程上易于实 ical models[J]. Journal of Hydrodynamics, 2015, 27(5):
现。控制器的设计采用固定系数维纳解,通过仿真 668–678.
对比了参考信号的选取对降噪性能的影响,并在水 [10] Burroughs C B, Stinebring D R. Cavity flow tones in wa-
ter[J]. The Journal of the Acoustical Society of America,
循环管路中对前馈控制效果进行了实验验证。实验 1994, 95(3): 1256–1263.
考虑了两种流速工况,水流流速的增大使得流激孔 [11] 熊济时, 吕世金, 邱昌林, 等. 流激开孔和空腔结构耦合振动
腔噪声和背景噪声都有明显提高,前馈 ANC 在这 噪声试验研究 [J]. 中国舰船研究, 2017, 12(4): 117–121.
两种工况下都取得了很好的降噪效果。使用腔内信 Xiong Jishi, Lyu Shijin, Qiu Changlin, et al. Experiments
of opening and cavity shear flow-induced vibration and
号作为参考的实际控制效果更优,在误差点和辅助 structural coupling resonance[J]. Chinese Journal of Ship
观测点都取得了 8 dB 以上的降噪效果。并且可以 Research, 2017, 12(4): 117–121.
看到控制器中增加的正则化因子β 可以用于提高系 [12] Liu L, Liu J, Lyu S. Numerical study of a control scheme
on flow-induced cavity noise[J]. MATEC Web of Confer-
统控制的鲁棒性。β 越小,它在误差点目标频段的降
ences, 2019, 283: 09002.
噪也更好,但也会造成辅助监测点的其他频段抬升 [13] Arunajatesan S, Sinha N. Modeling approach for reducing
增加,因而需要合理选择β 以达到最优控制效果。 Helmholtz resonance in submarine structures[C]//11th
AIAA/CEAS Aeroacoustics Conference. Monterey, Cali-
fornia: American Institute of Aeronautics and Astronau-
参 考 文 献 tics, 2005.
[14] 邓玉清, 张楠. 基于大涡模拟的抑制孔腔涡旋流动与脉动压力
[1] Micheau P, Chatellier L, Laumonier J, et al. Stability 的流动控制方法研究 [J]. 船舶力学, 2019, 23(1): 29–42.
analysis of active control of self-sustained pressure fluc- Deng Yuqing, Zhang Nan. Research on the flow control
tuations due to flow over a cavity[J]. The Journal of the method to suppress cavity vortical flow and pressure fluc-
Acoustical Society of America, 2006, 119(3): 1496–1503. tuations by large eddy simulation[J]. Journal of Ship Me-
[2] Cabell R H, Kegerise M A, Cox D E, et al. Experimen- chanics, 2019, 23(1): 29–42.
tal feedback control of flow-induced cavity tones[J]. AIAA [15] 裴杰, 张昊, 刘永伟, 等. 基于流动控制技术抑制孔腔水动力
Journal, 2006, 44(8): 1807–1816. 噪声的方法研究 [C]. 第十七届船舶水下噪声学术讨论会论文
[3] Kegerise M A, Cabell R H, Cattafesta III L N. Real- 集, 2019: 9.
time feedback control of flow-induced cavity tones—Part [16] 章文文, 徐荣武, 何琳, 等. 水中开孔腔流激振荡控制实验研
1: fixed-gain control[J]. Journal of Sound and Vibration, 究 [J]. 力学学报, 2021, 53(10): 2762–2775.
2007, 307(3–5): 906–923. Zhang Wenwen, Xu Rongwu, He Lin, et al. Experimen-
[4] Williams D, Morrow J. Adaptive control of multiple acous- tal investigation into the control of flow-induced oscil-
tic modes in cavities[C]//15th AIAA Computational Fluid lations of underwater aperture-cavities[J]. Chinese Jour-
Dynamics Conference. Anaheim, CA, U.S.A.: American nal of Theoretical and Applied Mechanics, 2021, 53(10):
Institute of Aeronautics and Astronautics, 2001. 2762–2775.
[5] 李浩, 安峰岩, 孙成溥, 等. 管道空腔流激线谱噪声及主动控 [17] Kuo S M, Morgan D R. Active noise control: a tutorial
制实验研究 [J]. 青岛理工大学学报, 2020, 41(6): 54–60. review[J]. Proceedings of the IEEE, 1999, 87(6): 943–975.
Li Hao, An Fengyan, Sun Chengpu, et al. Experimen- [18] Elliott S J. Signal processing for active control[M]. Lon-
tal study on flow-induced line spectrum noise and active don: Academic Press, 2001.
control of pipe cavity[J]. Journal of Qingdao University of [19] Haykin S S. Adaptive filter theory[M]. Pearson Education
Technology, 2020, 41(6): 54–60. India, 2008.