Page 73 - 《应用声学》2022年第6期
P. 73
第 41 卷 第 6 期 李春阳等: 异构混合相关熵有源噪声控制算法 919
Han Rong, Wu Ming, Wang Xiaolin, et al. A design 2012, 73(8): 836–841.
method of robust active headrests[J]. Journal of Applied [12] Singh A, Principe J C. Using correntropy as a cost func-
Acoustics, 2018, 37(5): 664–670. tion in linear adaptive filters[C]//2009 International Joint
[3] 吴礼福, 陈晶晶, 郭业才. 调节水床效应的双梯度有源噪声控 Conference on Neural Networks: IEEE, 2009: 2950–2955.
制自适应算法 [J]. 应用声学, 2020, 39(4): 632–637. [13] Wang Y, Yang L, Ren Q. A robust classification frame-
Wu Lifu, Chen Jingjing, Guo Yecai. Adaptive double- work with mixture correntropy[J]. Information Sciences,
gradient active noise control algorithms for tuning wa- 2019, 491: 306–318.
terbed effect[J]. Journal of Applied Acoustics, 2020, 39(4): [14] 卢明飞, 彭思愿, 陈霸东. 最大互相关熵多凸组合自适应滤波
632–637. 算法 [J]. 电子与信息学报, 2021, 43(2): 263–269.
[4] Sun G, Li M, Lim T C. A family of threshold based robust Lu Mingfei, Peng Siyuan, Chen Badong. Convex com-
adaptive algorithms for active impulsive noise control[J]. bination of multiple adaptive filters under the maximum
Applied Acoustics, 2015, 97: 30–36. correntropy criterion[J]. Journal of Electronics & Informa-
[5] Meng H, Chen S. A modified adaptive weight-constrained tion Technology, 2021, 43(2): 263–269.
FxLMS algorithm for feedforward active noise control sys- [15] Zhu Y, Zhao H, Zeng X, et al. Robust generalized maxi-
tems[J]. Applied Acoustics, 2020, 164(C): 107227. mum correntropy criterion algorithms for active noise con-
[6] Gu F, Chen S, Zhou Z, et al. An enhanced normalized trol[J]. IEEE/ACM Transactions on Audio, Speech, and
step-size algorithm based on adjustable nonlinear trans- Language Processing, 2020, 28: 1282–1292.
formation function for active control of impulsive noise[J]. [16] Kurian N C, Patel K, George N V. Robust active noise
Applied Acoustics, 2021, 176: 107853. control: an information theoretic learning approach[J].
[7] Bergamasco M, Piroddi L. Active noise control of im- Applied Acoustics, 2017, 117: 180–184.
pulsive noise using online estimation of an alpha-stable [17] 宋普查, 赵海全. 基于最大混合相关熵准则的主动噪声控制算
model[C]//49 th IEEE Conference on Decision & Con- 法 [J]. 信号处理, 2020, 36(6): 942–947.
trol(CDC), IEEE, 2010: 36–41. Song Pucha, Zhao Haiquan. Active noise control al-
[8] Shi L, Zhao H, Zakharov Y. Generalized variable step size gorithm based on maximum mixture correntropy cri-
continuous mixed p-norm adaptive filtering algorithm[J]. terion[J]. Journal of Signal Processing, 2020, 36(6):
IEEE Transactions on Circuits and Systems II: Express 942–947.
Briefs, 2018, 66(6): 1078–1082. [18] Ruan F, Liu K, Jordan M I. Taming nonconvexity in ker-
[9] Wu L, He H, Qiu X. An active impulsive noise control al- nel feature selection—Favorable properties of the laplace
gorithm with logarithmic transformation[J]. IEEE Trans- kernel[J]. Arxiv Preprint, Arxiv: 2106.09387, 2021.
actions on Audio, Speech, and Language Processing, 2010, [19] 赵海全, 陈奕达. 广义最大总体相关熵自适应滤波算法 [J]. 信
19(4): 1041–1044. 号处理, 2021, 37(8): 1378–1383.
[10] Akhtar M T, Mitsuhashi W. A modified normal- Zhao Haiquan, Chen Yida. Generalized maximum total
ized FxLMS algorithm for active control of impulsive correntropy adaptive filtering algorithm[J]. Journal of Sig-
noise[C]//2010 18th European Signal Processing Confer- nal Processing, 2021, 37(8): 1378–1383.
ence: IEEE, 2010: 1–5. [20] Lu L, Yin K, de Lamare R C, et al. A survey on active
[11] George N V, Panda G. A robust filtered-s LMS algorithm noise control in the past decade–Part I: linear systems[J].
for nonlinear active noise control[J]. Applied Acoustics, Signal Processing, 2021, 183: 108039.