Page 21 - 《应用声学》2023年第1期
P. 21
第 42 卷 第 1 期 程巍等: 大气声传播通道的声源当量估计方法 17
声在大气中传播的影响,忽略了有效声速剖面垂直 [5] Stevens J L, Divnov I I, Adams D A, et al. Constraints on
结构中存在的其他极大值点对地面接收信号能量 infrasound scaling and attenuation relations from Soviet
explosion data[J]. Pure and Applied Geophysics, 2002,
的影响。在上述实验中,均选取同时包含平流层传
159: 1046–1062.
播通道与热层传播通道的接收次声信号,平流层顶 [6] Barry G. Ray tracing of acoustic waves in the upper atmo-
水平风速为正值,则 LANL 估计方法修正因子预期 sphere[J]. Journal of Atmospheric and Terrestrial Physics,
修正效果为缩小估计值。在平流层与热层传播通道 1963, 25(11): 621–629.
[7] Picone J M, Hedin A E, Drob D P, et al. NRLMEISE-00
同时存在的情况下,本文提出的方法平均误差小于
empirical model of the atmosphere: statistical compar-
LANL声源能量估计方法。 isons and scientific issues[J]. Journal of Geophysical Re-
search: Space Physics, 2002, 107(A12): 1468.
4 结论 [8] Hedin A E, Spencer N W, Killeen T L. Empirical global
model of upper thermosphere winds based on atmosphere
对于使用远距离次声信号的进行声源能量估 and dynamics explorer satellite data[J]. Journal of Geo-
physical Research, 1998, 93: 9959–9978.
计,传统方法使用直接大气参数修正进行估计,提高
[9] 杨训仁, 陈宇. 大气声学 [M]. 北京: 科学出版社, 2007: 52.
了估计精度。但是此修正参数并未充分使用大气参 [10] Jones R M, Riley J P, Georges T M. A versatile three-
数剖面信息,且受大气模型精确度的影响很大,导致 dimensional Hamiltonian ray-tracing program for acoustic
waves in the atmosphere above irregular terrain[R]. Boul-
估计误差过大而不可用的情况产生。本文使用数值
der, Colorado: Wave Propagation Laboratory, 1986.
方法对声波在大气中传播的能量分布进行模拟,对 [11] Bass H E, Sutherland L C, Piercy J, et al. Absorption
于同时存在平流层与热层传播通道的状况,使用不 of sound by the atmosphere//Mason W P, Thurston R
同传播通道间的能量比例作为修正量,提出了基于 N. Physical acoustics[M]. New York: Academic, 1984:
145–232.
此修正量的声源能量估计方法,结合传播过程中的
[12] Greenspan M. Rotational relaxation in nitrogen, oxygen
大气参数垂直剖面进行声源能量估计,提高了声源 and air[J]. The Journal of the Acoustical Society of Amer-
能量估计精度。 ica, 1959, 31(2): 155–160.
[13] 余师倩. 大气低频声波传播建模及可视化研究 [D]. 武汉: 武
汉大学, 2012.
参 考 文 献 [14] 钱祖文. 非线性声学 [M]. 北京: 科学出版社, 2009: 33–35.
[15] Mcdonald B E. High-angle formulation for the nonlinear
[1] Pierce A D, Posey J W. Theory of the excitation and progressive-wave equation model[J]. Wave Motion, 2000,
propagation of Lamb’s atmospheric edge mode from nu- 31(2): 165–171.
clear explosions[J]. Geophysical Journal Royal Astronom- [16] Collino F. Perfectly matched absorbing layers for the
ical Society, 1971, 26: 341–368. paraxial equations[J]. Computational Physics, 1997, 131:
[2] Mckisic J M. Infrasound and the infrasonic monitoring of 164–180.
atmosphere nuclear explosions: PL-TR-97-2123[R]. Trac- [17] 傅竹风, 胡友秋. 空间等离子体数值模拟 [M]. 合肥: 安徽科学
tor Applied Sciences Final Report to Phillips Laboratory, 技术出版社, 1995: 103–104.
1997. [18] Kinney G F, Graham K J. Explosive shocks in air[M].
[3] Clauter D A, Blandford R R. Capability modeling of the New York: Springer Science & Business Media, 2013.
proposed international monitoring system 60-station in- [19] Vedy E. Simulation of flows in porous media with a flux
frasonic network[C]. Proceedings of the Infrasound Work- corrected transport algorithm[J]. Noise Control Engineer-
shop for CTBT Monitoring, August 25–28, 1997, Santa ing Journal, 2002, 50(6): 211–217.
Fe: 1998. [20] Too G P, Ginsberg J G. Nonlinear progressive wave equa-
[4] Whitaker R W. Infrasonic monitoring[C]. Proceedings of tion model for transient and steady-state sound beams[J].
the 17th Annual Seismic Research Symposium in Scotts- The Journal of the Acoustical Society of America, 1991,
dale, September, 1995, AZ: 1995. 91(1): 59–66.