Page 21 - 《应用声学》2023年第1期
P. 21

第 42 卷 第 1 期                程巍等: 大气声传播通道的声源当量估计方法                                            17


             声在大气中传播的影响,忽略了有效声速剖面垂直                              [5] Stevens J L, Divnov I I, Adams D A, et al. Constraints on
             结构中存在的其他极大值点对地面接收信号能量                                 infrasound scaling and attenuation relations from Soviet
                                                                   explosion data[J]. Pure and Applied Geophysics, 2002,
             的影响。在上述实验中,均选取同时包含平流层传
                                                                   159: 1046–1062.
             播通道与热层传播通道的接收次声信号,平流层顶                              [6] Barry G. Ray tracing of acoustic waves in the upper atmo-
             水平风速为正值,则 LANL 估计方法修正因子预期                             sphere[J]. Journal of Atmospheric and Terrestrial Physics,
             修正效果为缩小估计值。在平流层与热层传播通道                                1963, 25(11): 621–629.
                                                                 [7] Picone J M, Hedin A E, Drob D P, et al. NRLMEISE-00
             同时存在的情况下,本文提出的方法平均误差小于
                                                                   empirical model of the atmosphere: statistical compar-
             LANL声源能量估计方法。                                         isons and scientific issues[J]. Journal of Geophysical Re-
                                                                   search: Space Physics, 2002, 107(A12): 1468.
             4 结论                                                [8] Hedin A E, Spencer N W, Killeen T L. Empirical global
                                                                   model of upper thermosphere winds based on atmosphere
                 对于使用远距离次声信号的进行声源能量估                               and dynamics explorer satellite data[J]. Journal of Geo-
                                                                   physical Research, 1998, 93: 9959–9978.
             计,传统方法使用直接大气参数修正进行估计,提高
                                                                 [9] 杨训仁, 陈宇. 大气声学 [M]. 北京: 科学出版社, 2007: 52.
             了估计精度。但是此修正参数并未充分使用大气参                             [10] Jones R M, Riley J P, Georges T M. A versatile three-
             数剖面信息,且受大气模型精确度的影响很大,导致                               dimensional Hamiltonian ray-tracing program for acoustic
                                                                   waves in the atmosphere above irregular terrain[R]. Boul-
             估计误差过大而不可用的情况产生。本文使用数值
                                                                   der, Colorado: Wave Propagation Laboratory, 1986.
             方法对声波在大气中传播的能量分布进行模拟,对                             [11] Bass H E, Sutherland L C, Piercy J, et al. Absorption
             于同时存在平流层与热层传播通道的状况,使用不                                of sound by the atmosphere//Mason W P, Thurston R
             同传播通道间的能量比例作为修正量,提出了基于                                N. Physical acoustics[M]. New York: Academic, 1984:
                                                                   145–232.
             此修正量的声源能量估计方法,结合传播过程中的
                                                                [12] Greenspan M. Rotational relaxation in nitrogen, oxygen
             大气参数垂直剖面进行声源能量估计,提高了声源                                and air[J]. The Journal of the Acoustical Society of Amer-
             能量估计精度。                                               ica, 1959, 31(2): 155–160.
                                                                [13] 余师倩. 大气低频声波传播建模及可视化研究 [D]. 武汉: 武
                                                                   汉大学, 2012.
                            参 考     文   献                       [14] 钱祖文. 非线性声学 [M]. 北京: 科学出版社, 2009: 33–35.
                                                                [15] Mcdonald B E. High-angle formulation for the nonlinear
              [1] Pierce A D, Posey J W. Theory of the excitation and  progressive-wave equation model[J]. Wave Motion, 2000,
                 propagation of Lamb’s atmospheric edge mode from nu-  31(2): 165–171.
                 clear explosions[J]. Geophysical Journal Royal Astronom-  [16] Collino F. Perfectly matched absorbing layers for the
                 ical Society, 1971, 26: 341–368.                  paraxial equations[J]. Computational Physics, 1997, 131:
              [2] Mckisic J M. Infrasound and the infrasonic monitoring of  164–180.
                 atmosphere nuclear explosions: PL-TR-97-2123[R]. Trac-  [17] 傅竹风, 胡友秋. 空间等离子体数值模拟 [M]. 合肥: 安徽科学
                 tor Applied Sciences Final Report to Phillips Laboratory,  技术出版社, 1995: 103–104.
                 1997.                                          [18] Kinney G F, Graham K J. Explosive shocks in air[M].
              [3] Clauter D A, Blandford R R. Capability modeling of the  New York: Springer Science & Business Media, 2013.
                 proposed international monitoring system 60-station in-  [19] Vedy E. Simulation of flows in porous media with a flux
                 frasonic network[C]. Proceedings of the Infrasound Work-  corrected transport algorithm[J]. Noise Control Engineer-
                 shop for CTBT Monitoring, August 25–28, 1997, Santa  ing Journal, 2002, 50(6): 211–217.
                 Fe: 1998.                                      [20] Too G P, Ginsberg J G. Nonlinear progressive wave equa-
              [4] Whitaker R W. Infrasonic monitoring[C]. Proceedings of  tion model for transient and steady-state sound beams[J].
                 the 17th Annual Seismic Research Symposium in Scotts-  The Journal of the Acoustical Society of America, 1991,
                 dale, September, 1995, AZ: 1995.                  91(1): 59–66.
   16   17   18   19   20   21   22   23   24   25   26