Page 54 - 《应用声学》2023年第3期
P. 54

492                                                                                  2023 年 5 月


             也存在不足,如本文的实验条件下,迭代次数达到数                             [8] Wilson G R, Koch R A, Vidmar P J. Matched mode local-
             千次,这大大增加了计算量。下一步的工作是探索                                ization[J]. The Journal of the Acoustical Society of Amer-
                                                                   ica, 1988, 84(1): 310–320.
             减小计算量的方法并将最小Csiszár’s I-散度的迭代
                                                                 [9] Chen H, Lu I. Matched-mode processing schemes of a
             算法应用到对水平距离和深度的同时估计。                                   moving point source[J]. The Journal of the Acoustical So-
                                                                   ciety of America, 1992, 92(4): 2039–2041.
                                                                [10] Candy J V, Sullivan E J. Ocean acoustic signal processing:
                            参 考     文   献                          a model-based approach[J]. The Journal of the Acoustical
                                                                   Society of America, 1992, 92: 3285–3296.
                                                                [11] Cox H, Zeskind R M, Owen M H. Robust adaptive beam-
              [1] 魏尚飞, 韩东, 杨美娇, 等. 基于模态滤波的水下声源深度估                  forming[J]. IEEE Transactions on Acoustics Speech & Sig-
                 计方法 [J]. 电声技术, 2021, 45(8): 9–17.                 nal Processing, 1987, 35(10): 1365–1378.
                 Wei Shangfei, Han Dong, Yang Meijao, et al. Depth es-  [12] Stoica P, Wang Z, Li J. Robust Capon beamforming[J].
                 timation method of underwater sound source based on  IEEE Signal Processing Letters, 2003, 10(6): 172–175.
                 modal filtering[J]. Audio Engineering, 2021, 45(8): 9–17.  [13] Reed I S, Millett J D, Brennan L E. Rapid conver-
              [2] 李鹏, 章新华, 付留芳, 等. 一种基于模态域波束形成的水平阵                 gence rate in adaptive arrays[J]. IEEE Transactions on
                 被动目标深度估计 [J]. 物理学报, 2017, 66(8): 166–178.         Aerospace and Electronic Systems, 1974, 10(6): 853–863.
                 Li Peng, Zhang Xinhua, Fu Liufang, et al.  A modal  [14] Baggeroer B, Cox H. Passive sonar limits upon nulling
                 domain beamforming approach for depth estimation by  multiple moving ships with large aperture arrays[C]. Pro-
                 a horizontal array[J]. Acta Physica Sinica, 2017, 66(8):  ceedings of the 27th Asilomar Conference on Signals, Sys-
                 166–178.                                          tems and Computers, 1993.
              [3] 郭晓乐, 杨坤德, 马远良, 等. 一种基于简正波模态消频散                [15] Vardi Y, Lee D. From image deblurring to optimal invest-
                 变换的声源距离深度估计方法 [J]. 物理学报, 2016, 65(21):            ments: maximum likelihood solutions for positive linear
                 213–222.                                          inverse problems[J]. Journal of the Royal Statistical Soci-
                 Guo Xiaole, Yang Kunde, Ma Yuanliang, et al. A source  ety Series B, 1993, 55(3): 569–612.
                 range and depth estimation method based on modal dedis-  [16] Snyder D L, Schulz T J, Joseph A O. Deblurring subject
                 persion transform[J]. Acta Physica Sinica, 2016, 65(21):  to nonnegativity constraints[J]. IEEE Transactions on Sig-
                 213–222.                                          nal Processing, 1992, 40(5): 1143–1150.
              [4] 郭良浩, 刘志韬, 闫超. 利用水平阵模态域波束形成判别声源                [17] Csiszár I. Why least squares and maximum entropy? An
                 深度 [J]. 应用声学, 2019, 38(4): 490–500.               axiomatic approach to inverse problems[J]. The Annals of
                 Guo Lianghao, Liu Zhitao, Yan Chao. Source depth dis-  Statistics, 1991, 19: 2032–2066.
                 crimination based on beamforming in modal domain by  [18] Lucy L B. An iterative technique for the rectification of
                 a horizontal array[J]. Journal of Applied Acoustics, 2019,  observed distributions[J]. Astronomoa, 1974, 79: 745.
                 38(4): 490–500.                                [19] Richardson W H. Bayesian-based iterative method of im-
              [5] 曹怀刚, 赵振东, 郭圣明, 等. 利用简正模态相位关系的浅海                  age restoration[J]. Journal of the Optical Society of Amer-
                 声源深度分辨方法 [J]. 声学学报, 2020, 45(6): 801–810.         ica, 1972, 62(1): 55–59.
                 Cao Huaigang, Zhao Zhendong, Guo Shengming, et al.  [20] Yang T C. Deconvolved conventional beamforming for a
                 The discrimination of source depth regions in shallow wa-  horizontal line array[J]. IEEE Journal of Oceanic Engi-
                 ter based on mode phase relation[J]. Acta Acustica, 2020,  neering, 2018, 43(1): 160–172.
                 45(6): 801–810.                                [21] Yang T C. Superdirective beamforming applied to
              [6] 于喜凤, 李辉, 徐哲臻, 等. 一种基于阵列不变量的浅海声源                  SWellEx96 horizontal arrays data for source localiza-
                 深度分类方法 [J]. 声学技术, 2021, 40(5): 601–606.           tion[J]. The Journal of the Acoustical Society of America,
                 Yu Xifeng, Li Hui, Xu Zhezhen, et al. Source depth dis-  2019, 145(3): 179–184.
                 crimination based on array invariant in shallow water[J].  [22] Murray  J,  Ensberg  D.  The  SWellEx-96  experi-
                 Technical Acoustics, 2021, 40(5): 601–606.        ment[DE/OL]. [2022-01-12]. http://swellex96.ucsd.edu/.
              [7] Shang E C. Source depth estimation in waveguides[J]. The  [23] Yang T C. Modal shading coefficients for high resolution
                 Journal of the Acoustical Society of America, 1985, 77(4):  source depth localization[J]. The Journal of the Acoustical
                 1413–1418.                                        Society of America, 1990, 87(2): 668–674.
   49   50   51   52   53   54   55   56   57   58   59