Page 111 - 《应用声学》2023年第4期
P. 111

第 42 卷 第 4 期             曹景普等: 深海低声速沉积层简正波用于海底参数反演                                          773


              [3] Rubano L A. Acoustic propagation in shallow water over  ing, 2020, 45(1): 51–59.
                 a low velocity bottom[J]. The Journal of the Acoustical  [11] Michalopoulou Z H, Gerstoft P. Multipath broadband lo-
                 Society of America, 1980, 67(5): 1608–1613.       calization, bathymetry, and sediment inversion[J]. IEEE
              [4] Hastrup O F. Some bottom-reflection loss anomalies near  Journal of Oceanic Engineering, 2020, 45(1): 92–102.
                 grazing and their effect on propagation in shallow wa-  [12] Cao J, Qi Y, Zhou S, et al. Anomalous dispersion observed
                 ter[M]//Kuperman W A, Jensen F B. Bottom-interacting  in signal arrivals at a deep-sea floor receiver[J]. JASA Ex-
                 ocean acoustics. Boston, MA: Springer, 1980: 135–152.  press Letters, 2021, 1(7): 076004.
              [5] 李梦竹, 李整林, 周纪浔, 等. 一种低声速沉积层海底参数声
                                                                [13] Cao J, Qi Y, Zhou S, et al. Sensitivity analysis of group ve-
                 学反演方法 [J]. 物理学报, 2019, 68(9): 094301.
                                                                   locity dispersion for the sediment-borne mode in the deep
                 Li Mengzhu, Li Zhenglin, Zhou Jixun, et al. Geoacous-
                                                                   ocean[C]//Proceedings of 2021 OES China Ocean Acous-
                 tic inversion for acoustic parameters of sediment layer  tics (COA), Harbin, IEEE, 2021 Published: 387–391.
                 with low sound speed[J]. Acta Physica Sinica, 2019, 68(9):
                                                                [14] Jensen F B, Kuperman W A, Porter M B, et al. Compu-
                 094301.
                                                                   tational ocean acoustics[M]. New York: Springer, 2011.
              [6] Wilson P S, Knobles D P, Neilsen T B. Guest editorial
                                                                [15] Porter M B. The KRAKEN normal mode program[R].
                 an overview of the seabed characterization experiment[J].
                                                                   SACLANT Undersea Res. Centre, La Spezia, Italy, Rep.
                 IEEE Journal of Oceanic Engineering, 2020, 45(1): 1–13.
                                                                   SM-245, 1991.
              [7] Bonnel J, Lin Y T, Eleftherakis D, et al. Geoacoustic
                                                                [16] Hlawatsch F, Boudreaux-Bartels G F. Linear and
                 inversion on the New England Mud Patch using warping
                                                                   quadratic time-frequency signal representations[J]. IEEE
                 and dispersion curves of high-order modes[J]. The Jour-
                                                                   Signal Processing Magazine, 1992, 9(2): 21–67.
                 nal of the Acoustical Society of America, 2018, 143(5):
                 EL405–EL411.                                   [17] Hamilton E L, Bachman R T. Sound velocity and re-
              [8] Wan L, Badiey M, Knobles D P, et al. Estimates of low-  lated properties of marine sediments[J]. The Journal of the
                                                                   Acoustical Society of America, 1982, 72(6): 1891–1904.
                 frequency sound speed and attenuation in a surface mud
                 layer using low-order modes[J]. IEEE Journal of Oceanic  [18] Kennedy J, Eberhart R. Particle swarm optimiza-
                 Engineering, 2020, 45(1): 201–211.                tion[C]//Proceedings of Icnn95-international Conference
              [9] Belcourt J, Holland C W, Dosso S E, et al.  Depth-  on Neural Networks, IEEE, 4: 1942–1948.
                 dependent geoacoustic inferences with dispersion at the  [19] Gerstoft P. Inversion of seismoacoustic data using genetic
                 New England Mud Patch via reflection coefficient inver-  algorithms and a posteriori probability distributions[J].
                 sion[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1):  The Journal of the Acoustical Society of America, 1994,
                 69–91.                                            95(2): 770–782.
             [10] Barclay D R, Bevans D A, Buckingham M J. Estimation  [20] Gerstoft P, Mecklenbräuker C F. Ocean acoustic inversion
                 of the geoacoustic properties of the New England Mud  with estimation of a posteriori probability distributions[J].
                 Patch from the vertical coherence of the ambient noise in  The Journal of the Acoustical Society of America, 1998,
                 the water column[J]. IEEE Journal of Oceanic Engineer-  104(2): 808–819.
   106   107   108   109   110   111   112   113   114   115   116