Page 111 - 《应用声学》2023年第4期
P. 111
第 42 卷 第 4 期 曹景普等: 深海低声速沉积层简正波用于海底参数反演 773
[3] Rubano L A. Acoustic propagation in shallow water over ing, 2020, 45(1): 51–59.
a low velocity bottom[J]. The Journal of the Acoustical [11] Michalopoulou Z H, Gerstoft P. Multipath broadband lo-
Society of America, 1980, 67(5): 1608–1613. calization, bathymetry, and sediment inversion[J]. IEEE
[4] Hastrup O F. Some bottom-reflection loss anomalies near Journal of Oceanic Engineering, 2020, 45(1): 92–102.
grazing and their effect on propagation in shallow wa- [12] Cao J, Qi Y, Zhou S, et al. Anomalous dispersion observed
ter[M]//Kuperman W A, Jensen F B. Bottom-interacting in signal arrivals at a deep-sea floor receiver[J]. JASA Ex-
ocean acoustics. Boston, MA: Springer, 1980: 135–152. press Letters, 2021, 1(7): 076004.
[5] 李梦竹, 李整林, 周纪浔, 等. 一种低声速沉积层海底参数声
[13] Cao J, Qi Y, Zhou S, et al. Sensitivity analysis of group ve-
学反演方法 [J]. 物理学报, 2019, 68(9): 094301.
locity dispersion for the sediment-borne mode in the deep
Li Mengzhu, Li Zhenglin, Zhou Jixun, et al. Geoacous-
ocean[C]//Proceedings of 2021 OES China Ocean Acous-
tic inversion for acoustic parameters of sediment layer tics (COA), Harbin, IEEE, 2021 Published: 387–391.
with low sound speed[J]. Acta Physica Sinica, 2019, 68(9):
[14] Jensen F B, Kuperman W A, Porter M B, et al. Compu-
094301.
tational ocean acoustics[M]. New York: Springer, 2011.
[6] Wilson P S, Knobles D P, Neilsen T B. Guest editorial
[15] Porter M B. The KRAKEN normal mode program[R].
an overview of the seabed characterization experiment[J].
SACLANT Undersea Res. Centre, La Spezia, Italy, Rep.
IEEE Journal of Oceanic Engineering, 2020, 45(1): 1–13.
SM-245, 1991.
[7] Bonnel J, Lin Y T, Eleftherakis D, et al. Geoacoustic
[16] Hlawatsch F, Boudreaux-Bartels G F. Linear and
inversion on the New England Mud Patch using warping
quadratic time-frequency signal representations[J]. IEEE
and dispersion curves of high-order modes[J]. The Jour-
Signal Processing Magazine, 1992, 9(2): 21–67.
nal of the Acoustical Society of America, 2018, 143(5):
EL405–EL411. [17] Hamilton E L, Bachman R T. Sound velocity and re-
[8] Wan L, Badiey M, Knobles D P, et al. Estimates of low- lated properties of marine sediments[J]. The Journal of the
Acoustical Society of America, 1982, 72(6): 1891–1904.
frequency sound speed and attenuation in a surface mud
layer using low-order modes[J]. IEEE Journal of Oceanic [18] Kennedy J, Eberhart R. Particle swarm optimiza-
Engineering, 2020, 45(1): 201–211. tion[C]//Proceedings of Icnn95-international Conference
[9] Belcourt J, Holland C W, Dosso S E, et al. Depth- on Neural Networks, IEEE, 4: 1942–1948.
dependent geoacoustic inferences with dispersion at the [19] Gerstoft P. Inversion of seismoacoustic data using genetic
New England Mud Patch via reflection coefficient inver- algorithms and a posteriori probability distributions[J].
sion[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): The Journal of the Acoustical Society of America, 1994,
69–91. 95(2): 770–782.
[10] Barclay D R, Bevans D A, Buckingham M J. Estimation [20] Gerstoft P, Mecklenbräuker C F. Ocean acoustic inversion
of the geoacoustic properties of the New England Mud with estimation of a posteriori probability distributions[J].
Patch from the vertical coherence of the ambient noise in The Journal of the Acoustical Society of America, 1998,
the water column[J]. IEEE Journal of Oceanic Engineer- 104(2): 808–819.