Page 18 - 《应用声学》2023年第6期
P. 18
1128 2023 年 11 月
15 MHz 聚焦探头,可发现宽度 300 µm 流道内部存 on reflection coefficient amplitude spectrum characteriza-
在的多处气泡堵塞。 tions[J]. Journal of Mechanical Engineering, 2019, 55(12):
44–49.
[11] 胡宏伟, 李雄兵, 倪培君, 等. 复杂型面工件超声自动检测中
的匹配定位方法 [J]. 中国机械工程, 2012, 23(2): 195–199.
参 考 文 献
Hu Hongwei, Li Xiongbing, Ni Peijun, et al. Matching
and localization method in automatic ultrasonic testing
[1] Cui P, Wang S C. Application of microfluidic chip tech- for complex surface parts[J]. China Mechanical Engineer-
nology in pharmaceutical analysis: a review[J]. Journal of ing, 2012, 23(2): 195–199.
Pharmaceutical Analysis, 2019, 9(4): 238–247. [12] 周庆祥, 李经明, 李建奎, 等. 超声 C 扫描用喷水系统设计及
[2] 孙薇, 陆敏, 李立, 等. 微流控芯片技术应用进展 [J]. 中国国 其检测稳定性 [J]. 应用声学, 2021, 40(4): 579–587.
境卫生检疫杂志, 2019, 42(3): 221–224. Zhou Qingxiang, Li Jingming, Li Jiankui, et al. Design of
Sun Wei, Lu Min, Li Li, et al. Application progress on mi- coupling system with jetted water stream for ultrasonic C-
crofluidic chip technology[J]. Chinese Journal of Frontier scan and discussion on the stablity of inspection[J]. Jour-
Health and Quarantine, 2019, 42(3): 221–224. nal of Applied Acoustics, 2021, 40(4): 579–587.
[3] Pattanayak P, Singh S K, Gulati M, et al. Microflu- [13] 宋日生, 喻建胜, 何莎, 等. 超声 C 扫描技术在油气管道检测
idic chips: recent advances, critical strategies in design, 中的应用 [J]. 无损检测, 2018, 40(10): 45–48, 68.
applications and future perspectives[J]. Microfluidics and Song Risheng, Yu Jiansheng, He Sha, et al. Application
Nanofluidics, 2021, 25(12): 99–126. of ultrasonic C-scan technology in decection of oil and gas
[4] Gao H W, Yan C L, Wu W, et al. Application of mi- pipelines[J]. Nondestructive Testing, 2018, 40(10): 45–48,
crofluidic chip technology in food safety sensing[J]. Sen- 68.
sors, 2020, 20(6): 1792–1809. [14] 周正干, 胡逸雯, 章宽爽. 变厚度多边形蜂窝结构的超声 C 扫
[5] Reyes D R, Halter M, Hwang J. Dimensional metrology 描检测方法 [J]. 应用声学, 2018, 37(1): 28–33.
of lab-on-a-chip internal structures: a comparison of opti- Zhou Zhenggan, Hu Yiwen, Zhang Kuanshuang. Ultra-
cal coherence tomography with confocal fluorescence mi- sonic C-scan method of variable thickness polygonal hon-
croscopy[J]. Journal of Microscopy, 2015, 259(1): 26–35. eycomb structure[J]. Journal of Applied Acoustics, 2018,
[6] Feng X J, Liu B F, Li J J, et al. Advances in coupling mi- 37(1): 28–33.
crofluidic chips to mass spectrometry[J]. Mass Spectrom- [15] 张驰, 栾亦琳, 罗志伟, 等. 扩散焊接头缺陷超声 C 扫描检测
etry Reviews, 2015, 34(5): 535–557. 能力分析 [J]. 焊接学报, 2016, 37(9): 83–86, 90, 132.
[7] Ou X W, Chen P, Huang X Z, et al. Microfluidic chip Zhang Chi, Luan Yilin, Luo Zhiwei, et al. Analysis
electrophoresis for biochemical analysis[J]. Journal of Sep- of ultrasonic C-scan detectability on diffusion bonding
aration Science, 2019, 43(1): 258–270. joint[J]. Transactions of the China Welding Institution,
[8] 徐佳男, 孔明, 刘维, 等. 微流控芯片通道的全息显微检测方 2016, 37(9): 83–86, 90, 132.
法 [J]. 红外与激光工程, 2022, 51(9): 351–358. [16] 陈晗. 超声 C 扫描设备运动检测系统设计与研究 [D]. 哈尔滨:
Xu Jianan, Kong Ming, Liu Wei, et al. Holographic mi- 哈尔滨工业大学, 2019.
croscopy detection method of microfluidic chip channel[J]. [17] Kishore M B, Lee H, Abera A G, et al. Quantitative eval-
Infrared and Laser Engineering, 2022, 51(9): 351–358. uation of partial delamination in thermal barrier coatings
[9] Lastras-Martínez L F, Balderas-Navarro R E, Castro- using ultrasonic C-scan imaging[J]. International Journal
García R, et al. Structural characterization of a capillary of Precision Engineering and Manufacturing, 2020, 21(1):
microfluidic chip using microreflectance[J]. Applied Spec- 157–165.
troscopy, 2017, 71(6): 1357–1362. [18] 徐春广, 王洪博, 肖定国. 大型曲面复合材料超声检测技术 [J].
[10] 孙珞茗, 林莉, 马志远. 基于声压反射系数幅度谱特征的涂 纤维复合材料, 2013, 30(3): 33–38.
层脱粘超声 C 扫描成像检测研究 [J]. 机械工程学报, 2019, Xu Chunguang, Wang Hongbo, Xiao Dingguo. Ultra-
55(12): 44–49. sonic transmission detection techniques for large complex
Sun Luoming, Lin Li, Ma Zhiyuan. Measurement of the curved surface of composite material[J]. Fiber Compos-
coatings debonding using ultrasonic C-scan imaging based ites, 2013, 30(3): 33–38.