Page 18 - 《应用声学》2023年第6期
P. 18

1128                                                                                2023 年 11 月


             15 MHz 聚焦探头,可发现宽度 300 µm 流道内部存                        on reflection coefficient amplitude spectrum characteriza-
             在的多处气泡堵塞。                                             tions[J]. Journal of Mechanical Engineering, 2019, 55(12):
                                                                   44–49.
                                                                [11] 胡宏伟, 李雄兵, 倪培君, 等. 复杂型面工件超声自动检测中
                                                                   的匹配定位方法 [J]. 中国机械工程, 2012, 23(2): 195–199.
                            参 考     文   献
                                                                   Hu Hongwei, Li Xiongbing, Ni Peijun, et al. Matching
                                                                   and localization method in automatic ultrasonic testing
              [1] Cui P, Wang S C. Application of microfluidic chip tech-  for complex surface parts[J]. China Mechanical Engineer-
                 nology in pharmaceutical analysis: a review[J]. Journal of  ing, 2012, 23(2): 195–199.
                 Pharmaceutical Analysis, 2019, 9(4): 238–247.  [12] 周庆祥, 李经明, 李建奎, 等. 超声 C 扫描用喷水系统设计及
              [2] 孙薇, 陆敏, 李立, 等. 微流控芯片技术应用进展 [J]. 中国国              其检测稳定性 [J]. 应用声学, 2021, 40(4): 579–587.
                 境卫生检疫杂志, 2019, 42(3): 221–224.                    Zhou Qingxiang, Li Jingming, Li Jiankui, et al. Design of
                 Sun Wei, Lu Min, Li Li, et al. Application progress on mi-  coupling system with jetted water stream for ultrasonic C-
                 crofluidic chip technology[J]. Chinese Journal of Frontier  scan and discussion on the stablity of inspection[J]. Jour-
                 Health and Quarantine, 2019, 42(3): 221–224.      nal of Applied Acoustics, 2021, 40(4): 579–587.
              [3] Pattanayak P, Singh S K, Gulati M, et al.  Microflu-  [13] 宋日生, 喻建胜, 何莎, 等. 超声 C 扫描技术在油气管道检测
                 idic chips: recent advances, critical strategies in design,  中的应用 [J]. 无损检测, 2018, 40(10): 45–48, 68.
                 applications and future perspectives[J]. Microfluidics and  Song Risheng, Yu Jiansheng, He Sha, et al. Application
                 Nanofluidics, 2021, 25(12): 99–126.                of ultrasonic C-scan technology in decection of oil and gas
              [4] Gao H W, Yan C L, Wu W, et al. Application of mi-  pipelines[J]. Nondestructive Testing, 2018, 40(10): 45–48,
                 crofluidic chip technology in food safety sensing[J]. Sen-  68.
                 sors, 2020, 20(6): 1792–1809.                  [14] 周正干, 胡逸雯, 章宽爽. 变厚度多边形蜂窝结构的超声 C 扫
              [5] Reyes D R, Halter M, Hwang J. Dimensional metrology  描检测方法 [J]. 应用声学, 2018, 37(1): 28–33.
                 of lab-on-a-chip internal structures: a comparison of opti-  Zhou Zhenggan, Hu Yiwen, Zhang Kuanshuang. Ultra-
                 cal coherence tomography with confocal fluorescence mi-  sonic C-scan method of variable thickness polygonal hon-
                 croscopy[J]. Journal of Microscopy, 2015, 259(1): 26–35.  eycomb structure[J]. Journal of Applied Acoustics, 2018,
              [6] Feng X J, Liu B F, Li J J, et al. Advances in coupling mi-  37(1): 28–33.
                 crofluidic chips to mass spectrometry[J]. Mass Spectrom-  [15] 张驰, 栾亦琳, 罗志伟, 等. 扩散焊接头缺陷超声 C 扫描检测
                 etry Reviews, 2015, 34(5): 535–557.               能力分析 [J]. 焊接学报, 2016, 37(9): 83–86, 90, 132.
              [7] Ou X W, Chen P, Huang X Z, et al. Microfluidic chip  Zhang Chi, Luan Yilin, Luo Zhiwei, et al.  Analysis
                 electrophoresis for biochemical analysis[J]. Journal of Sep-  of ultrasonic C-scan detectability on diffusion bonding
                 aration Science, 2019, 43(1): 258–270.            joint[J]. Transactions of the China Welding Institution,
              [8] 徐佳男, 孔明, 刘维, 等. 微流控芯片通道的全息显微检测方                  2016, 37(9): 83–86, 90, 132.
                 法 [J]. 红外与激光工程, 2022, 51(9): 351–358.          [16] 陈晗. 超声 C 扫描设备运动检测系统设计与研究 [D]. 哈尔滨:
                 Xu Jianan, Kong Ming, Liu Wei, et al. Holographic mi-  哈尔滨工业大学, 2019.
                 croscopy detection method of microfluidic chip channel[J].  [17] Kishore M B, Lee H, Abera A G, et al. Quantitative eval-
                 Infrared and Laser Engineering, 2022, 51(9): 351–358.  uation of partial delamination in thermal barrier coatings
              [9] Lastras-Martínez L F, Balderas-Navarro R E, Castro-  using ultrasonic C-scan imaging[J]. International Journal
                 García R, et al. Structural characterization of a capillary  of Precision Engineering and Manufacturing, 2020, 21(1):
                 microfluidic chip using microreflectance[J]. Applied Spec-  157–165.
                 troscopy, 2017, 71(6): 1357–1362.              [18] 徐春广, 王洪博, 肖定国. 大型曲面复合材料超声检测技术 [J].
             [10] 孙珞茗, 林莉, 马志远. 基于声压反射系数幅度谱特征的涂                    纤维复合材料, 2013, 30(3): 33–38.
                 层脱粘超声 C 扫描成像检测研究 [J]. 机械工程学报, 2019,               Xu Chunguang, Wang Hongbo, Xiao Dingguo.  Ultra-
                 55(12): 44–49.                                    sonic transmission detection techniques for large complex
                 Sun Luoming, Lin Li, Ma Zhiyuan. Measurement of the  curved surface of composite material[J]. Fiber Compos-
                 coatings debonding using ultrasonic C-scan imaging based  ites, 2013, 30(3): 33–38.
   13   14   15   16   17   18   19   20   21   22   23