Page 103 - 《应用声学》2024年第1期
P. 103

第 43 卷 第 1 期                陈键等: 基于低频吸声超构材料的复合消声器                                            99


             部分频段所出现的一些误差可能在于仿真和实验                                            参 考 文        献
             误差。仿真时对耦合考虑不够,如穿孔管与吸声超
                                                                 [1] Biot M A. Theory of propagation of elastic waves in a
             构材料之间的耦合未考虑到;使用的是有限元仿真,
                                                                   fluid-saturated porous solid. II. higher frequency range[J].
             未使用 CFD 等。此外,实验过程中可能存在误差,                             The Journal of the Acoustical Society of America, 1956,
             如接口处可能不严密等。                                           28: 179–191.
                                                                 [2] Groby J P, Lagarrigue C, Brouard B, et al. Enhancing the
                        ܦູ   ᫾ઈኮ   ܭՌ๗ܦ٨     ๗ܦఴቫ
                                                                   absorption properties of acoustic porous plates by period-
                                                                   ically embedding Helmholtz resonators[J]. The Journal of
                                                                   the Acoustical Society of America, 2015, 137(1): 273–280.
                                                                 [3] Allard J F, Atalla N. Propagation of sound in porous me-
                                    ͜ܦ٨
                                                                   dia[M]. New Jersey: A John Wiley and Sons, Ltd., 1994.
                           ࠄᰎፇ౧                                  [4] 刘乐, 黄唯纯, 钟雨豪, 等. 声学超构材料技术实用化的进
                           ͌ᄾፇ౧
                   40                                              展 [J]. 中国材料进展, 2021, 40(1): 57–68.
                                                                   Liu Le, Huang Weichun, Zhong Yuhao, et al. Progess on
                  ͜᤬૯ܿ/dB  20                                      the research and applications of acoustic metamaterials[J].
                                                                   Materials China, 2021, 40(1): 57–68.
                                                                                              Broadband acoustic
                                                                 [5] Nguyen H, Wu Q, Xu X, et al.
                                                                   silencer with ventilation based on slit-type Helmholtz
                                                                   resonators[J]. Applied Physics Letters, 2020, 117(13):
                                                                   134103–134107.
                    0
                                                                 [6] Rajendran V, Piacsek A, Echenagucia T M. Design of
                       0  200 400 600 800 1000 1200 1400 1600 1800
                                    ᮠဋ/Hz                          broadband Helmholtz resonator arrays using the radia-
                                                                   tion impedance method[J]. The Journal of the Acoustical
                图 6 测试装置图、复合消声器性能仿真和实验对比                           Society of America, 2022, 151(1): 457–466.
               Fig. 6 Diagram of testing device and comparison   [7] Wang X, Mak C M. Wave propagation in a duct with a
                                                                   periodic Helmholtz resonators array[J]. The Journal of the
               between simulation and experiment of composite
                                                                   Acoustical Society of America, 2012, 131(2): 1172–1182.
               muffler performance
                                                                 [8] 陈龙虎, 韩冬, 张文辉, 等. 穿孔管与超材料薄膜耦合的消
                                                                   声结构的设计及性能研究 [J]. 工程设计学报, 2021, 28(4):
             5 结论                                                  521–526.
                                                                   Chen Longhu, Han Dong, Zhang Wenhui, et al. Design
                 本文基于HR 阵列设计了一种低频吸声超构材                             and performance study of acoustic attenuation structure
             料,并将其与传统的穿孔管消声器相结合,设计了一                               of perforated tube coupled with metamaterial film[J]. Chi-
                                                                   nese Journal of Engineering Design, 2021, 28(4): 521–526.
             种复合消声管道结构。首先对传统的穿孔管消声器
                                                                 [9] 马大猷. 微穿孔板结构的设计 [J]. 声学学报, 1988, 13(3):
             性能进行研究,接着对低频吸声超构材料进行性能                                174–180.
             验证,最后对复合消声器性能进行了仿真分析和实                                Ma Dayou.  Design of microperforated panel construc-
             验验证。得到以下结论:                                           tions[J]. Acta Acustica, 1988, 13(3): 174–180.
                                                                [10] Huang S, Fang X, Wang X, et al. Acoustic perfect ab-
                 (1) 低频吸声超构材料在低频段具有良好的消
                                                                   sorbers via Helmholtz resonators with embedded aper-
             声性能,穿孔管则主要作用于中高频段,设计了传统                               tures[J]. The Journal of the Acoustical Society of America,
             穿孔管与低频吸声超构材料耦合的复合消声器。                                 2019, 145(1): 254–262.
                                                                [11] Xu W, Liu J, Yu D, et al. Coherent coupling based meta-
                 (2) 发现所设计的复合消声器在400 ∼ 1718 Hz
                                                                   structures for high acoustic absorption at 220–500 Hz fre-
             范围内具有良好的消声性能, 平均 TL 能达到                               quency[J]. Applied Acoustics, 2021, 182: 108181.
             18.15 dB,实现了低频宽带高效消声。考虑到噪                          [12] Liu C R, Wu J H, Ma F, et al.  A thin multi-order
             声问题日益严峻,而传统声学材料具有明显的局限                                Helmholtz metamaterial with perfect broadband acous-
                                                                   tic absorption[J]. Applied Physics Express, 2019, 12(8):
             性,如低频段性能较差、材料体积较大等,本设计具                               084002.
             有包括新风系统在内的广泛应用前景。                                  [13] Wang Y, Zhao H, Yang H, et al.  A tunable sound-
                 (3) 实验与仿真在部分频段存在部分误差,可                            absorbing metamaterial based on coiled-up space[J]. Jour-
                                                                   nal of Applied Physics, 2018, 123(18): 185109.
             能原因在于仿真时对耦合考虑不足、实验过程中存
                                                                [14] Liu L, Xie L X, Huang W C, et al. Broadband acous-
             在测量误差等,应在进一步研究中克服。                                    tic absorbing metamaterial via deep learning approach[J].
                                                                   Applied Physics Letters, 2022, 120: 251701.
   98   99   100   101   102   103   104   105   106   107   108