Page 103 - 《应用声学》2024年第1期
P. 103
第 43 卷 第 1 期 陈键等: 基于低频吸声超构材料的复合消声器 99
部分频段所出现的一些误差可能在于仿真和实验 参 考 文 献
误差。仿真时对耦合考虑不够,如穿孔管与吸声超
[1] Biot M A. Theory of propagation of elastic waves in a
构材料之间的耦合未考虑到;使用的是有限元仿真,
fluid-saturated porous solid. II. higher frequency range[J].
未使用 CFD 等。此外,实验过程中可能存在误差, The Journal of the Acoustical Society of America, 1956,
如接口处可能不严密等。 28: 179–191.
[2] Groby J P, Lagarrigue C, Brouard B, et al. Enhancing the
ܦູ ઈኮ ܭՌ๗ܦ٨ ๗ܦఴቫ
absorption properties of acoustic porous plates by period-
ically embedding Helmholtz resonators[J]. The Journal of
the Acoustical Society of America, 2015, 137(1): 273–280.
[3] Allard J F, Atalla N. Propagation of sound in porous me-
͜ܦ٨
dia[M]. New Jersey: A John Wiley and Sons, Ltd., 1994.
ࠄᰎፇ౧ [4] 刘乐, 黄唯纯, 钟雨豪, 等. 声学超构材料技术实用化的进
͌ᄾፇ౧
40 展 [J]. 中国材料进展, 2021, 40(1): 57–68.
Liu Le, Huang Weichun, Zhong Yuhao, et al. Progess on
͜૯ܿ/dB 20 the research and applications of acoustic metamaterials[J].
Materials China, 2021, 40(1): 57–68.
Broadband acoustic
[5] Nguyen H, Wu Q, Xu X, et al.
silencer with ventilation based on slit-type Helmholtz
resonators[J]. Applied Physics Letters, 2020, 117(13):
134103–134107.
0
[6] Rajendran V, Piacsek A, Echenagucia T M. Design of
0 200 400 600 800 1000 1200 1400 1600 1800
ᮠဋ/Hz broadband Helmholtz resonator arrays using the radia-
tion impedance method[J]. The Journal of the Acoustical
图 6 测试装置图、复合消声器性能仿真和实验对比 Society of America, 2022, 151(1): 457–466.
Fig. 6 Diagram of testing device and comparison [7] Wang X, Mak C M. Wave propagation in a duct with a
periodic Helmholtz resonators array[J]. The Journal of the
between simulation and experiment of composite
Acoustical Society of America, 2012, 131(2): 1172–1182.
muffler performance
[8] 陈龙虎, 韩冬, 张文辉, 等. 穿孔管与超材料薄膜耦合的消
声结构的设计及性能研究 [J]. 工程设计学报, 2021, 28(4):
5 结论 521–526.
Chen Longhu, Han Dong, Zhang Wenhui, et al. Design
本文基于HR 阵列设计了一种低频吸声超构材 and performance study of acoustic attenuation structure
料,并将其与传统的穿孔管消声器相结合,设计了一 of perforated tube coupled with metamaterial film[J]. Chi-
nese Journal of Engineering Design, 2021, 28(4): 521–526.
种复合消声管道结构。首先对传统的穿孔管消声器
[9] 马大猷. 微穿孔板结构的设计 [J]. 声学学报, 1988, 13(3):
性能进行研究,接着对低频吸声超构材料进行性能 174–180.
验证,最后对复合消声器性能进行了仿真分析和实 Ma Dayou. Design of microperforated panel construc-
验验证。得到以下结论: tions[J]. Acta Acustica, 1988, 13(3): 174–180.
[10] Huang S, Fang X, Wang X, et al. Acoustic perfect ab-
(1) 低频吸声超构材料在低频段具有良好的消
sorbers via Helmholtz resonators with embedded aper-
声性能,穿孔管则主要作用于中高频段,设计了传统 tures[J]. The Journal of the Acoustical Society of America,
穿孔管与低频吸声超构材料耦合的复合消声器。 2019, 145(1): 254–262.
[11] Xu W, Liu J, Yu D, et al. Coherent coupling based meta-
(2) 发现所设计的复合消声器在400 ∼ 1718 Hz
structures for high acoustic absorption at 220–500 Hz fre-
范围内具有良好的消声性能, 平均 TL 能达到 quency[J]. Applied Acoustics, 2021, 182: 108181.
18.15 dB,实现了低频宽带高效消声。考虑到噪 [12] Liu C R, Wu J H, Ma F, et al. A thin multi-order
声问题日益严峻,而传统声学材料具有明显的局限 Helmholtz metamaterial with perfect broadband acous-
tic absorption[J]. Applied Physics Express, 2019, 12(8):
性,如低频段性能较差、材料体积较大等,本设计具 084002.
有包括新风系统在内的广泛应用前景。 [13] Wang Y, Zhao H, Yang H, et al. A tunable sound-
(3) 实验与仿真在部分频段存在部分误差,可 absorbing metamaterial based on coiled-up space[J]. Jour-
nal of Applied Physics, 2018, 123(18): 185109.
能原因在于仿真时对耦合考虑不足、实验过程中存
[14] Liu L, Xie L X, Huang W C, et al. Broadband acous-
在测量误差等,应在进一步研究中克服。 tic absorbing metamaterial via deep learning approach[J].
Applied Physics Letters, 2022, 120: 251701.