Page 207 - 《应用声学》2024年第1期
P. 207

第 43 卷 第 1 期            胡航溢等: 基于改进粒子群算法的超声雾化电源频率跟踪                                          203


                 由以上实验测试结果可知,本文采用的改进                             [6] 齐晓旭, 陈奇栓. 单片机在超声电源频率跟踪电路中的应用研
             PSO优化 PID 参数作为频率跟踪的优化算法,可实                            究 [J]. 时代农机, 2016, 43(4): 36–37.
                                                                   Qi Xiaoxu, Chen Qishuan. Research on application of sin-
             现对超声雾化换能器系统进行快速、持续稳定的频
                                                                   gle chip microcomputer in frequency tracking circuit of ul-
             率跟踪。                                                  trasonic power supply[J]. Times Agricultural Machinery,
                                                                   2016, 43(4): 36–37.
             4 结论                                                [7] 曾东红, 李正中, 周光平, 等. 一种超声清洗电源频率跟踪技
                                                                   术 [J]. 齐齐哈尔大学学报 (自然科学版), 2010, 26(1): 1–4.
                 本文采用改进 PSO 优化 PID 参数作为频率跟                         Zeng Donghong, Li Zhengzhong, Zhou Guangping, et al.
                                                                   A frequency tracking technology for ultrasonic cleaning
             踪的优化算法,设计了一种频率自动跟踪超声波雾
                                                                   power supply[J]. Journal of Qiqihar University(Natural
             化电源。利用该电源驱动一款超声雾化换能器进行                                Science Edition), 2010, 26(1): 1–4.
             超声雾化测试,结果表明采用该优化算法设计的超                              [8] 孔亚广, 陈洪欢, 郑松. 电流反馈式超声波发生器的频率搜
                                                                   索和跟踪 [C]//2013 年全国功率超声学术会议论文集, 2013:
             声电源其输出波形和频率跟踪均得到了良好的改
                                                                   57–59.
             善,实现了对超声雾化换能器系统进行快速、稳定的                             [9] 刘宁庄, 文迪雅, 段富才, 等. 压电换能器等效参数测量方法
             频率跟踪,保证超声雾化系统持续稳定高效地工作。                               对比研究及验证 [J]. 压电与声光, 2021, 43(5): 710–714.
                                                                   Liu Ningzhuang, Wen Diya, Duan Fucai, et al. Compara-
                                                                   tive study and verification of measuring methods of equiv-
                            参 考     文   献                          alent parameters of piezoelectric transducers[J]. Piezoelec-
                                                                   tric and Acoustooptic, 2021, 43(5): 710–714.
              [1] 李小雪, 汪东, 李平, 等. 基于 DDS 的超声换能器频率跟踪系            [10] 杨晓, 王国柱. 基于 PID 控制理论的改进粒子群优化算法 [J].
                 统 [J]. 压电与声光, 2009, 31(5): 692–694, 698.          控制工程, 2019, 26(8): 1497–1502.
                 Li Xiaoxue, Wang Dong, Li Ping, et al. Frequency trac-  Yang Xiao, Wang Guozhu. The improved particle swarm
                 ing system for piezoelectric transducer based on DDS[J].  optimization algorithm based on PID control theory[J].
                 Piezoelectric and Acoustooptic, 2009, 31(5): 692–694,  Control Engineering, 2019, 26(8): 1497–1502.
                 698.                                           [11] 陈水利, 蔡国榕, 郭文忠, 等. PSO 算法加速因子的非线性策
              [2] 彭呈祥, 段发阶, 蒋佳佳, 等. 基于频率跟踪的超声驱动电源                  略研究 [J]. 长江大学学报 (自科版) 理工卷, 2007, 4(4): 1–4,
                 研制 [J]. 电力电子技术, 2019, 53(5): 1–5.                 16, 172.
                 Peng Chengxiang, Duan Fajie, Jiang Jiajia, et al. Devel-  Chen Shuili, Cai Guorong, Guo Wenzhong, et al. Re-
                 opment of ultrasonic driving power based on frequency  search on nonlinear strategy of acceleration factor of PSO
                 tracking[J]. Power Electronics Technology, 2019, 53(5):  algorithm[J]. Journal of Changjiang University(self Sci-
                 1–5.                                              ence Edition) Science and Engineering Volume, 2007, 4(4):
              [3] 滕旭东, 傅友登, 王弘辉. 基于数字 PWM 的新型超声波清洗                 1–4, 16, 172.
                 电源的研制 [J]. 电子技术应用, 2007, 33(9): 154–157.       [12] 苏攀, 张伟, 李强, 等. 基于改进粒子群算法的 PID 参数优化
                 Teng Xudong, Fu Youdeng, Wang Honghui. A novel ul-  研究 [J]. 软件导刊, 2020, 19(10): 94–97.
                 trasonic cleaning power supply based on digital PWM[J].  Su Pan, Zhang Wei, Li Qiang, et al. PID parameter opti-
                 Electronic Technology Application, 2007, 33(9): 154–157.  mization based on improved particle swarm optimization
              [4] Jimenez T. An auto-tuning PID control system based on  algorithm[J]. Software Guide, 2020, 19(10): 94–97.
                 genetic algorithms to provide delay guarantees in passive  [13] Kennedy J, Eberhart R C. Particle swarm optimiza-
                 optical networks[J]. Expert Systems with Applications an  tion[C]. IEEE International Conference on Neural Net-
                 International Journal, 2015, 42(23): 9211–9220.   works, Piscataway, 1995(2): 1942–1948.
              [5] 刘宁庄, 张远宝, 许龙, 等. 基于模糊 PID 控制的超声电源频            [14] 赵志刚, 林玉娇, 尹兆远. 基于自适应惯性权重的均值粒子群
                 率跟踪设计 [J]. 电力电子技术, 2021, 55(10): 80–82, 86.       优化算法 [J]. 计算机工程与科学, 2016, 38(3): 501–506.
                 Liu Ningzhuang, Zhang Yuanbao, Xu Long, et al. Design  Zhao Zhigang, Lin Yujiao, Yin Zhaoyuan. A mean par-
                 of ultrasonic power frequency tracking based on fuzzy PID  ticle swarm optimization algorithm based on adaptive in-
                 control[J]. Power Electronics Technology, 2021, 55(10):  ertia weight[J]. Computer Engineering and Science, 2016,
                 80–82, 86.                                        38(3): 501–506.
   202   203   204   205   206   207   208   209   210   211   212