Page 193 - 《应用声学》2025年第2期
P. 193

第 44 卷 第 2 期          褚润聪等: 基于向量近似消息传递均衡的超奈奎斯特水声通信                                          453


                 tude modulation[J]. Japanese Journal of Applied Physics,  [14] Qing H, Yu H, Ji F, et al. Turbo equalization for under-
                 2005, 44(6S): 4689–4693.                          water acoustic Faster-Than-Nyquist signaling system[C].
              [5] Shimura T, Yukihiro K, Deguchi M. High-rate underwa-  Proceedings of the International Conference on Underwa-
                 ter acoustic communication system for SHINKAI6500[C].  ter Networks & Systems, Atlanta, GA, USA, 2019: 1–5.
                 2018 IEEE/OES Autonomous Underwater Vehicle Work-  [15] Bedeer E, Ahmed M H, Yanikomeroglu H. Low-
                 shop (AUV), Porto, Portugal, 2018: 1–5.           complexity detection of high-order QAM Faster-Than-
              [6] Song H C, Hodgkiss W S. Efficient use of bandwidth for  Nyquist signaling[J]. IEEE Access, 2017, 5: 14579–14588.
                 underwater acoustic communication[J]. The Journal of the  [16] Li D, Wu Y, Tao J, et al. Performance analysis and im-
                 Acoustical Society of America, 2013, 134(2): 905–908.  provement for VAMP soft frequency-domain equalizers[J].
              [7] Fan J, Guo S, Zhou X, et al. Faster-Than-Nyquist signal-  IEEE Access, 2019, 7: 42495–42506.
                 ing: an overview[J]. IEEE Access, 2017, 5: 1925–1940.
                                                                [17] Li D, Wu Y, Tao J, Zhu M. Near-optimal self-iterative
              [8] Ishihara T, Sugiura S, Hanzo L. The evolution of
                                                                   VAMP equalization enabled by Hadamard-Haar random
                 Faster-Than-Nyquist signaling[J]. IEEE Access, 2021, 9:
                                                                   precoding[J]. IEEE Communications Letters, 2020, 24(6):
                 86535–86564.
                                                                   1249–1253.
              [9] Zhou J, Ishihara T, Sugiura S. Precoded Faster-Than-
                                                                [18] Li D, Wu Y, Zhu M, et al. An enhanced iterative re-
                 Nyquist signaling for doubly selective underwater acous-
                                                                   ceiver based on vector approximate message passing for
                 tic communication channel[J]. IEEE Wireless Communi-
                                                                   deep-sea vertical underwater acoustic communications[J].
                 cations Letters, 2022, 11(10): 2041–2045.
                                                                   The Journal of the Acoustical Society of America, 2021,
             [10] Ishihara T, Sugiura S. Eigendecomposition-precoded
                                                                   149(3): 1549–1558.
                 Faster-Than-Nyquist signaling with optimal power al-
                                                                [19] Wu Y, Zhu M, Liang T, et al. Shipborne underwater
                 location in frequency-selective fading channels[J]. IEEE
                                                                   acoustic communication system and sea trials with sub-
                 Transactions on Wireless Communications, 2022, 21(3):
                                                                   mersible Shenhai Yongshi[J]. China Ocean Engineering,
                 1681–1693.
                                                                   2018, 32(6): 746–754.
             [11] Stojanovic M, Preisig J. Underwater acoustic communi-
                                                                [20] 洪丹阳, 王巍, 普湛清, 等. 改进的信道稀疏度检测正交多载
                 cation channels: Propagation models and statistical char-
                                                                   波多普勒估计方法 [J]. 声学学报, 2021, 46(2): 209–219.
                 acterization[J]. IEEE Communications Magazine, 2009,
                                                                   Hong Danyang, Wang Wei, Pu Zhanqing, et al. An im-
                 47(1): 84–89.
             [12] 张友文, 孙大军, 刘璐. 水声迭代接收机中的超 Nyquist 技术              proved channel sparsity-based Doppler estimation method
                                                                   for underwater orthogonal frequency-division multiplex-
                 和速率兼容编码技术 [J]. 哈尔滨工程大学学报, 2016, 37(4):
                                                                   ing[J]. Acta Acustica, 2021, 46(2): 209–219.
                 538–543.
                 Zhang Youwen, Sun Dajun, Liu Lu. Iterative receiver  [21] Cespedes I, Huang Y, Ophir J, et al. Methods for estima-
                 based on super-Nyquist and rate-compatible punctured  tion of subsample time delays of digitized echo signals[J].
                 coding techniques for underwater acoustic communica-  Ultrasonic Imaging, 1995, 17(2): 142–171.
                 tion[J]. Journal of Harbin Engineering University, 2016,  [22] McCormick M M, Varghese T. An approach to unbiased
                 37(4): 538–543.                                   subsample interpolation for motion tracking[J]. Ultrasonic
             [13] Li D, Wu Y, Zhu M, et al. Efficient Faster-than-Nyquist  Imaging, 2013, 35(2): 76–89.
                 transceiver design for underwater acoustic communica-  [23] Sharif B S, Neasham J, Hinton O R, et al. A computation-
                 tions[C]. Proceedings of the 14th International Conference  ally efficient Doppler compensation system for underwater
                 on Underwater Networks & Systems, Atlanta, GA, USA,  acoustic communications[J]. IEEE Journal of Oceanic En-
                 2019: 1–5.                                        gineering, 2000, 25(1): 52–61.
   188   189   190   191   192   193   194   195   196   197   198