Page 193 - 《应用声学》2025年第2期
P. 193
第 44 卷 第 2 期 褚润聪等: 基于向量近似消息传递均衡的超奈奎斯特水声通信 453
tude modulation[J]. Japanese Journal of Applied Physics, [14] Qing H, Yu H, Ji F, et al. Turbo equalization for under-
2005, 44(6S): 4689–4693. water acoustic Faster-Than-Nyquist signaling system[C].
[5] Shimura T, Yukihiro K, Deguchi M. High-rate underwa- Proceedings of the International Conference on Underwa-
ter acoustic communication system for SHINKAI6500[C]. ter Networks & Systems, Atlanta, GA, USA, 2019: 1–5.
2018 IEEE/OES Autonomous Underwater Vehicle Work- [15] Bedeer E, Ahmed M H, Yanikomeroglu H. Low-
shop (AUV), Porto, Portugal, 2018: 1–5. complexity detection of high-order QAM Faster-Than-
[6] Song H C, Hodgkiss W S. Efficient use of bandwidth for Nyquist signaling[J]. IEEE Access, 2017, 5: 14579–14588.
underwater acoustic communication[J]. The Journal of the [16] Li D, Wu Y, Tao J, et al. Performance analysis and im-
Acoustical Society of America, 2013, 134(2): 905–908. provement for VAMP soft frequency-domain equalizers[J].
[7] Fan J, Guo S, Zhou X, et al. Faster-Than-Nyquist signal- IEEE Access, 2019, 7: 42495–42506.
ing: an overview[J]. IEEE Access, 2017, 5: 1925–1940.
[17] Li D, Wu Y, Tao J, Zhu M. Near-optimal self-iterative
[8] Ishihara T, Sugiura S, Hanzo L. The evolution of
VAMP equalization enabled by Hadamard-Haar random
Faster-Than-Nyquist signaling[J]. IEEE Access, 2021, 9:
precoding[J]. IEEE Communications Letters, 2020, 24(6):
86535–86564.
1249–1253.
[9] Zhou J, Ishihara T, Sugiura S. Precoded Faster-Than-
[18] Li D, Wu Y, Zhu M, et al. An enhanced iterative re-
Nyquist signaling for doubly selective underwater acous-
ceiver based on vector approximate message passing for
tic communication channel[J]. IEEE Wireless Communi-
deep-sea vertical underwater acoustic communications[J].
cations Letters, 2022, 11(10): 2041–2045.
The Journal of the Acoustical Society of America, 2021,
[10] Ishihara T, Sugiura S. Eigendecomposition-precoded
149(3): 1549–1558.
Faster-Than-Nyquist signaling with optimal power al-
[19] Wu Y, Zhu M, Liang T, et al. Shipborne underwater
location in frequency-selective fading channels[J]. IEEE
acoustic communication system and sea trials with sub-
Transactions on Wireless Communications, 2022, 21(3):
mersible Shenhai Yongshi[J]. China Ocean Engineering,
1681–1693.
2018, 32(6): 746–754.
[11] Stojanovic M, Preisig J. Underwater acoustic communi-
[20] 洪丹阳, 王巍, 普湛清, 等. 改进的信道稀疏度检测正交多载
cation channels: Propagation models and statistical char-
波多普勒估计方法 [J]. 声学学报, 2021, 46(2): 209–219.
acterization[J]. IEEE Communications Magazine, 2009,
Hong Danyang, Wang Wei, Pu Zhanqing, et al. An im-
47(1): 84–89.
[12] 张友文, 孙大军, 刘璐. 水声迭代接收机中的超 Nyquist 技术 proved channel sparsity-based Doppler estimation method
for underwater orthogonal frequency-division multiplex-
和速率兼容编码技术 [J]. 哈尔滨工程大学学报, 2016, 37(4):
ing[J]. Acta Acustica, 2021, 46(2): 209–219.
538–543.
Zhang Youwen, Sun Dajun, Liu Lu. Iterative receiver [21] Cespedes I, Huang Y, Ophir J, et al. Methods for estima-
based on super-Nyquist and rate-compatible punctured tion of subsample time delays of digitized echo signals[J].
coding techniques for underwater acoustic communica- Ultrasonic Imaging, 1995, 17(2): 142–171.
tion[J]. Journal of Harbin Engineering University, 2016, [22] McCormick M M, Varghese T. An approach to unbiased
37(4): 538–543. subsample interpolation for motion tracking[J]. Ultrasonic
[13] Li D, Wu Y, Zhu M, et al. Efficient Faster-than-Nyquist Imaging, 2013, 35(2): 76–89.
transceiver design for underwater acoustic communica- [23] Sharif B S, Neasham J, Hinton O R, et al. A computation-
tions[C]. Proceedings of the 14th International Conference ally efficient Doppler compensation system for underwater
on Underwater Networks & Systems, Atlanta, GA, USA, acoustic communications[J]. IEEE Journal of Oceanic En-
2019: 1–5. gineering, 2000, 25(1): 52–61.