Page 236 - 《应用声学》2025年第3期
P. 236

770                                                                                  2025 年 5 月


                 2015, 80(2): 1MA-Z50.                          [32] 褚衍东, 常迎香, 张建刚. 数值计算方法 [M]. 北京: 科学出版
             [26] Mastromarino S, Rook R, de Haas D, et al. An ultra-  社, 2016.
                 sonic shear wave viscometer for low viscosity Newtonian  [33] 宋叶志. MATLAB 数值分析与应用 [M]. 北京: 机械工业出
                 liquids[J]. Measurement Science and Technology, 2021,  版社, 2021.
                 32(12): 125305.                                [34] Cholda P. Numerical methods: Fundamentals and appli-
             [27] 孔维梁, 周丽, Yuan F G. 粘性液体对管道中扭转导波传播特               cations[J]. Computing Reviews, 2020, 61(12): 382.
                 性的影响研究 [J]. 振动与冲击, 2012, 31(11): 48–53.        [35] Chotiros N P. Acoustics of the seabed as a poroelastic
                 Kong Weiliang, Zhou Li, Yuan F G. Influence of viscous  medium[M]. Switzerland: Springer Nature Press, 2017:
                 liquid on propagation of torsional wave in a pipe[J]. Jour-  7–24.
                 nal of Vibration and Shock, 2012, 31(11): 48–53.  [36] Aristégui C, Lowe M J S, Cawley P. Guided waves in fluid-
             [28] Shah S A. Axially symmetric vibrations of fluid-filled  filled pipes surrounded by different fluids[J]. Ultrasonics,
                 poroelastic circular cylindrical shells[J]. Journal of Sound  1999, 39(5): 367–375.
                 and Vibration, 2008, 318(1–2): 389–405.        [37] Duan W B. Time domain numerical modelling of guided
             [29] Song X J, Ta D A, Petro M. Diagnosis of osteoporo-  wave excitation in fluid-filled pipes[J]. Finite Elements in
                 sis based on multi-scale wavelet parameters of ultra-  Analysis and Design, 2022, 210: 1–17.
                 sonic guided waves[J]. Chinese Journal of Acoustics, 2017,  [38] 林晓平, 刘增华, 雷振坤, 等. 水下带粘弹性层输油管道中纵
                 36(4): 429–438.                                   向导波的传播特性 [J]. 工程力学, 2012, 29(4): 244–250.
             [30] Okumura S, Taki H, Nguyen V H, et al.  Estimation  Lin Xiaoping, Liu Zenghua, Lei Zhenkun, et al. Propa-
                 of phase velocity and attenuation of visco-elastic plate  gation of longitudinal guided waves in oil-filled and vis-
                 with adaptive beamforming technique for cortical bone as-  coelastic coating pipes surrounded by water[J]. Engineer-
                 sessment[C]. IEEE International Ultrasonics Symposium.  ing Mechanics, 2012, 29(4): 244–250.
                 IEEE, 2017.                                    [39] Gao Y, Liu Y, Muggleton J M. Axisymmetric fluid-
             [31] Gazis D C. Three-dimensional investigation of the propa-  dominated wave in fluid-filled plastic pipes: Loading ef-
                 gation of waves in hollow circular cylinders. I[J]. Analyt-  fects of surrounding elastic medium[J]. Applied Acoustics,
                 ical Foundation, 1959, 31(5): 568–573.            2017, 116: 43–49.




             附录A



                                                               2   2       2      2
             m 11 = 0, m 12 = 0, m 13 = 2r 2 λ 1 γ Slf1 Z 1 (γ Slf1 r 2 ) − r (2γ Slf1  − (γ Slf1  + k )(A + Qη 1 )/N)Z 0 (γ Slf1 r 2 ),
                                                               2
                                           2
                                                              2
                        ′
             m 14 = 2r 2 λ γ Sls1 Z 1 (γ Sls1 r 2 ) − r (2γ 2  − (γ 2  + k )(A + Qη 2 )/N)Z 0 (γ Sls1 r 2 ),
                        1                  2   Sls1    Sls1
                         2
             m 15 = −2ikr λ 2 γ St1 Z 0 (γ St1 r 2 ) + 2ikr 2 Z 1 (γ St1 r 2 ),
                         2
                                                               2
                                            2
             m 16 = 2r 2 λ 1 γ Slf1 W 1 (γ Slf1 r 2 ) − r (2γ 2  − (γ 2  + k )(A + Qη 1 )/N)W 0 (γ Slf1 r 2 ),
                                            2   Slf1    Slf1
                                                              2
                                            2
             m 17 = 2r 2 λ γ Sls1 W 1 (γ Sls1 r 2 ) − r (2γ 2  − (γ 2  + k )(A + Qη 2 )/N)W 0 (γ Sls1 r 2 ),
                        ′
                        1                   2   Sls1   Sls1
                         2
             m 18 = −2ikr λ 2 γ St1 W 0 (γ St1 r 2 ) + 2ikr 2 W 1 (γ St1 r 2 ),
                         2
                                          2
                                                    2
             m 21 = 0, m 22 = 0, m 23 = −r (γ 2  + k )(Q + Rη 1 )Z 0 (γ Slf1 r 2 ),
                                          2  Slf1
                                                                           2
                                                                              2
                      2
                                2
                                                                                     2
             m 24 = −r (γ 2  + k )(Q + Rη 2 )Z 0 (γ Sls1 r 2 ), m 25 = 0, m 26 = −r (γ Slf1  + k )(Q + Rη 1 )W 0 (γ Slf1 r 2 ),
                                                                           2
                         Sls1
                      2
                      2
                                2
             m 27 = −r (γ 2  + k )(Q + Rη 2 )W 0 (γ Sls1 r 2 ), m 28 = 0,
                      2  Sls1
                                            2
                                                                            2 ′
             m 31 = 0, m 32 = 0, m 33 = −2kr λ 1 γ Slf1 Z 1 (γ Slf1 r 2 ), m 34 = −2kr λ γ Sls1 Z 1 (γ Sls1 r 2 ),
                                            2                               2 1
                                                        2
                               2
                      2
                                                                                        2 ′
             m 35 = ir (γ 2  − k )Z 1 (γ St1 r 2 ), m 36 = −2kr λ 1 γ Slf1 W 1 (γ Slf1 r 2 ), m 37 = −2kr λ γ Sls1 W 1 (γ Sls1 r 2 ),
                     2
                                                                                        2 1
                                                        2
                        St1
                               2
                      2
             m 38 = ir (γ 2  − k )W 1 (γ St1 r 2 ),
                     2  St1
                     2
                                    2
             m 41 = r [−iωρ L + 2µ L k ]H (1) (γ Ll1 r 1 ) + 2r 1 λ L1 µ L γ Ll1 H (1) (γ Ll1 r 1 ),
                                                                 1
                     1
                                       0
                         2
             m 42 = −2ikr λ L2 µ L γ Lt1 H (1) (γ Lt1 r 1 ) + 2r 1 µ L ikH (1) (γ Lt1 r 1 ),
                         1           0                     1
                      { [                       2   2       2      2                         ]
             m 43 = iω  2r 1 λ 1 γ Slf1 Z 1 (γ Slf1 r 1 ) − r (2γ Slf1  − (γ Slf1  + k )(A + Qη 1 )/N)Z 0 (γ Slf1 r 1 ) N
                                                1
                                                      }
                      2
                                2
                         2
                   − r (γ Sls1  + k )(Q + Rη 2 )Z 0 (γ Sls1 r 1 ) ,
                      1
   231   232   233   234   235   236   237   238   239   240   241