Page 236 - 《应用声学》2025年第3期
P. 236
770 2025 年 5 月
2015, 80(2): 1MA-Z50. [32] 褚衍东, 常迎香, 张建刚. 数值计算方法 [M]. 北京: 科学出版
[26] Mastromarino S, Rook R, de Haas D, et al. An ultra- 社, 2016.
sonic shear wave viscometer for low viscosity Newtonian [33] 宋叶志. MATLAB 数值分析与应用 [M]. 北京: 机械工业出
liquids[J]. Measurement Science and Technology, 2021, 版社, 2021.
32(12): 125305. [34] Cholda P. Numerical methods: Fundamentals and appli-
[27] 孔维梁, 周丽, Yuan F G. 粘性液体对管道中扭转导波传播特 cations[J]. Computing Reviews, 2020, 61(12): 382.
性的影响研究 [J]. 振动与冲击, 2012, 31(11): 48–53. [35] Chotiros N P. Acoustics of the seabed as a poroelastic
Kong Weiliang, Zhou Li, Yuan F G. Influence of viscous medium[M]. Switzerland: Springer Nature Press, 2017:
liquid on propagation of torsional wave in a pipe[J]. Jour- 7–24.
nal of Vibration and Shock, 2012, 31(11): 48–53. [36] Aristégui C, Lowe M J S, Cawley P. Guided waves in fluid-
[28] Shah S A. Axially symmetric vibrations of fluid-filled filled pipes surrounded by different fluids[J]. Ultrasonics,
poroelastic circular cylindrical shells[J]. Journal of Sound 1999, 39(5): 367–375.
and Vibration, 2008, 318(1–2): 389–405. [37] Duan W B. Time domain numerical modelling of guided
[29] Song X J, Ta D A, Petro M. Diagnosis of osteoporo- wave excitation in fluid-filled pipes[J]. Finite Elements in
sis based on multi-scale wavelet parameters of ultra- Analysis and Design, 2022, 210: 1–17.
sonic guided waves[J]. Chinese Journal of Acoustics, 2017, [38] 林晓平, 刘增华, 雷振坤, 等. 水下带粘弹性层输油管道中纵
36(4): 429–438. 向导波的传播特性 [J]. 工程力学, 2012, 29(4): 244–250.
[30] Okumura S, Taki H, Nguyen V H, et al. Estimation Lin Xiaoping, Liu Zenghua, Lei Zhenkun, et al. Propa-
of phase velocity and attenuation of visco-elastic plate gation of longitudinal guided waves in oil-filled and vis-
with adaptive beamforming technique for cortical bone as- coelastic coating pipes surrounded by water[J]. Engineer-
sessment[C]. IEEE International Ultrasonics Symposium. ing Mechanics, 2012, 29(4): 244–250.
IEEE, 2017. [39] Gao Y, Liu Y, Muggleton J M. Axisymmetric fluid-
[31] Gazis D C. Three-dimensional investigation of the propa- dominated wave in fluid-filled plastic pipes: Loading ef-
gation of waves in hollow circular cylinders. I[J]. Analyt- fects of surrounding elastic medium[J]. Applied Acoustics,
ical Foundation, 1959, 31(5): 568–573. 2017, 116: 43–49.
附录A
2 2 2 2
m 11 = 0, m 12 = 0, m 13 = 2r 2 λ 1 γ Slf1 Z 1 (γ Slf1 r 2 ) − r (2γ Slf1 − (γ Slf1 + k )(A + Qη 1 )/N)Z 0 (γ Slf1 r 2 ),
2
2
2
′
m 14 = 2r 2 λ γ Sls1 Z 1 (γ Sls1 r 2 ) − r (2γ 2 − (γ 2 + k )(A + Qη 2 )/N)Z 0 (γ Sls1 r 2 ),
1 2 Sls1 Sls1
2
m 15 = −2ikr λ 2 γ St1 Z 0 (γ St1 r 2 ) + 2ikr 2 Z 1 (γ St1 r 2 ),
2
2
2
m 16 = 2r 2 λ 1 γ Slf1 W 1 (γ Slf1 r 2 ) − r (2γ 2 − (γ 2 + k )(A + Qη 1 )/N)W 0 (γ Slf1 r 2 ),
2 Slf1 Slf1
2
2
m 17 = 2r 2 λ γ Sls1 W 1 (γ Sls1 r 2 ) − r (2γ 2 − (γ 2 + k )(A + Qη 2 )/N)W 0 (γ Sls1 r 2 ),
′
1 2 Sls1 Sls1
2
m 18 = −2ikr λ 2 γ St1 W 0 (γ St1 r 2 ) + 2ikr 2 W 1 (γ St1 r 2 ),
2
2
2
m 21 = 0, m 22 = 0, m 23 = −r (γ 2 + k )(Q + Rη 1 )Z 0 (γ Slf1 r 2 ),
2 Slf1
2
2
2
2
2
m 24 = −r (γ 2 + k )(Q + Rη 2 )Z 0 (γ Sls1 r 2 ), m 25 = 0, m 26 = −r (γ Slf1 + k )(Q + Rη 1 )W 0 (γ Slf1 r 2 ),
2
Sls1
2
2
2
m 27 = −r (γ 2 + k )(Q + Rη 2 )W 0 (γ Sls1 r 2 ), m 28 = 0,
2 Sls1
2
2 ′
m 31 = 0, m 32 = 0, m 33 = −2kr λ 1 γ Slf1 Z 1 (γ Slf1 r 2 ), m 34 = −2kr λ γ Sls1 Z 1 (γ Sls1 r 2 ),
2 2 1
2
2
2
2 ′
m 35 = ir (γ 2 − k )Z 1 (γ St1 r 2 ), m 36 = −2kr λ 1 γ Slf1 W 1 (γ Slf1 r 2 ), m 37 = −2kr λ γ Sls1 W 1 (γ Sls1 r 2 ),
2
2 1
2
St1
2
2
m 38 = ir (γ 2 − k )W 1 (γ St1 r 2 ),
2 St1
2
2
m 41 = r [−iωρ L + 2µ L k ]H (1) (γ Ll1 r 1 ) + 2r 1 λ L1 µ L γ Ll1 H (1) (γ Ll1 r 1 ),
1
1
0
2
m 42 = −2ikr λ L2 µ L γ Lt1 H (1) (γ Lt1 r 1 ) + 2r 1 µ L ikH (1) (γ Lt1 r 1 ),
1 0 1
{ [ 2 2 2 2 ]
m 43 = iω 2r 1 λ 1 γ Slf1 Z 1 (γ Slf1 r 1 ) − r (2γ Slf1 − (γ Slf1 + k )(A + Qη 1 )/N)Z 0 (γ Slf1 r 1 ) N
1
}
2
2
2
− r (γ Sls1 + k )(Q + Rη 2 )Z 0 (γ Sls1 r 1 ) ,
1