Page 234 - 201805
P. 234
816 2018 年 9 月
的振型图以及工具头端面的位移分布图,我们发现 Tang Yifan, Lin Shuyu. Band gaps of the phononic piezo-
二维声子晶体结构的圆柱形工具头端面的振幅得 electric smart materials with LCR shunting circuits[J].
Acta Phys. Sin., 2016, 65(16): 104–112.
到明显的改善,形成较为均匀的振幅。
[8] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙
(3) 比较未加工二维声子晶体结构槽以及加工 特性研究 [J]. 物理学报, 2013, 62(13): 134302.
二维声子晶体结构槽的圆柱形超声塑料焊接系统 Zhang Siwen, Wu Juhui. Low-frequency band gaps in
phononic crystals with composite locally resonant struc-
工具头的纵振动位移图,可知二维声子晶体结构的
tures[J]. Acta Phys. Sin., 2013, 62(13): 134302.
圆柱形工具头的位移分布更加均匀,且纵向振动的 [9] Wang G, Wen X, Wen J, et al. Two-dimensional lo-
振幅有明显的提高。 cally resonant phononic crystals with binary structures[J].
Physical Review Letters, 2004, 93(15): 154302.
[10] Villa-Arango S, Torres R, Kyriacou P A, et al. Fully-
disposable multilayered phononic crystal liquid sensor
参 考 文 献
with symmetry reduction and a resonant cavity[J]. Mea-
surement, 2017, 102: 20–25.
[1] Tsujino J, Hongoh M, Yoshikuni M, et al. Welding char- [11] Vasseur J O, Deymier P A, Djafarirouhani B, et al. Abso-
acteristics of 27, 40 and 67 kHz ultrasonic plastic weld- lute forbidden bands and waveguiding in two-dimensional
ing systems using fundamental- and higher-resonance fre- phononic crystal plates[J]. Physical Review B Condensed
quencies[J]. Ultrasonics, 2004, 42(1–9): 131–137. Matter, 2008, 20(8): 439–446.
[2] Rani M R, Rudramoorthy R. Computational modeling [12] Binci L, Tu C, Zhu H, et al. Planar ring-shaped phononic
and experimental studies of the dynamic performance of crystal anchoring boundaries for enhancing the quality
ultrasonic horn profiles used in plastic welding[J]. Ultra- factor of Lamb mode resonators[J]. Applied Physics Let-
sonics, 2013, 53(3): 763–772. ters, 2016, 109(20): 2596–2512.
[3] Hongoh M, Yoshikuni M, Miura H, et al. Configuration [13] 郁殿龙, 刘耀宗, 邱静, 等. 一维声子晶体振动特性与仿真 [J].
of a 30-mm-diameter 94 kHz ultrasonic longitudinal vi- 振动与冲击, 2005, 24(2): 92–94, 152.
bration system for plastic welding[J]. Japanese Journal of Yu Dianlong, Liu Yaozong, Qiu Jin, et al. Vibration prop-
Applied Physics, 2004, 43(5B): 2896–2900. erty and simulation of one dimension phononic crystals[J].
[4] 梁召峰, 周光平, 莫喜平, 等. 大尺寸圆柱形超声塑焊开槽焊 Journal of Vibration and Shock, 2005, 24(2): 92–94, 152.
头的设计 [J]. 机械强度, 2010, 32(4): 617–621. [14] 温熙森. 声子晶体 [M]. 北京: 国防工业出版社, 2009.
Liang Zhaofeng, Zhou Guangping, Mo Xiping, et al. De- [15] Ronda S, Aragón J L, Iglesias E, et al. The use of
sign of large cross-section cylindrical-type ultrasonic plas- phononic crystals to design piezoelectric power transduc-
tic welding horns with slots[J]. Journal of Mechanical ers[J]. Sensors, 2017, 17(4): 729.
Strength, 2010, 32(4): 617–621. [16] Aragón J L, Quinterotorres R, Domínguezjuárez J L,
[5] 林书玉, 张福成. 有限长各向同性圆柱体耦合振动的研究 [J]. et al. Planar modes free piezoelectric resonators using
声学与电子工程, 1993(1): 22–27. a phononic crystal with holes[J]. Ultrasonics, 2016, 71:
Lin Shuyu, Zhang Fucheng. Study on coupled vibration 177–182.
of finite length isotropic cylinder[J]. Acoustics and Elec- [17] Lucklum R, Ke M, Zubtsov M. Two-dimensional phononic
tronics Engineering, 1993(1): 22–27. crystal sensor based on a cavity mode[J]. Sensors & Ac-
[6] Liu S, Lin S. The analysis of the electro-mechanical model tuators B Chemical, 2012, 171–172(9): 271–277.
of the cylindrical radial composite piezoelectric ceramic [18] Wang N, Tsai J M, Hsiao F L, et al. Experimental
transducer[J]. Sensors & Actuators A Physical, 2009, investigation of a cavity-mode resonator using a micro-
155(1): 175–180. machined two-dimensional silicon phononic crystal in a
[7] 唐一璠, 林书玉. LCR 分流电路下压电声子晶体智能材料的 square lattice[J]. IEEE Electron Device Letters, 2011,
带隙 [J]. 物理学报, 2016, 65(16): 104–112. 32(6): 821–823.