Page 17 - 应用声学2019年第4期
P. 17

第 38 卷 第 4 期                                                                       Vol. 38, No. 4
             2019 年 7 月                          Journal of Applied Acoustics                      July, 2019

             ⋄ 李启虎院士八十华诞学术论文 ⋄



                            一种检测低信噪比下未知波形时变

                                            相干信号的方法                        ∗



                                                   王宏磊     †   马远良


                                               (西北工业大学航海学院       西安   710072)
                摘要 从获取的数据中检测目标信号,是雷达、声呐等领域重要的研究内容。时频域严重畸变的回波信号以及
                时变线谱信号的自适应检测,具有重要意义。为了挖掘和推广自适应相干累积 (ACI) 技术在未知时变信号检
                测领域的能力,该文给出了 ACI 算法的基本原理,并进行了系统性的理论推导,得到了 ACI 算法的宽带时变自
                回归滑动平均模型 (ARMA) 和窄带复解析模型。利用这些模型解释了产生信号相干累积的机理,分析得出了
                产生相干累积的条件,揭示了这种时变系统的许多奇异特性。结合仿真实验和实际海上实验数据对 ACI 算法
                展开验证,结果表明 ACI 算法对于低信噪比下未知波形信号具有优异的检测能力,展示出 ACI 算法在水下探
                测等相关领域存在广泛的实际应用前景。
                关键词     自适应相干累积,ARMA 模型,窄带复解析模型,低信噪比
                中图法分类号: TB566           文献标识码: A          文章编号: 1000-310X(2019)04-0477-07
                DOI: 10.11684/j.issn.1000-310X.2019.04.002

                        A method for detection of low SNR signals with unknown and
                                                  variant waveforms

                                              WANG Honglei MA Yuanliang

                      (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

                 Abstract  Detection of targets’ signal from acquired data is an important research content in radar, sonar
                 and other signal processing fields. The adaptive signal processing techniques have high practical application
                 values due to the characteristic that no/less prior knowledge of signal is required. The adaptive detections
                 of echo signals seriously distorted in time frequency domain and line spectrum varied in time are of great
                 significance. In order to exploring and extending the ability of adaptive coherent integration (ACI) in unknown
                 time-varying signal detection, the fundamental theory of ACI algorithm is presented in this paper. Broadband
                 time-varying autoregressive moving average (ARMA) model and narrow-band complex analytic model of ACI
                 are theoretically deduced. The mechanism of signal coherent integration is explained by using these models.
                 At the same time, the conditions of signal coherent integration are analyzed and presented. In the process
                 of analysis, some unique characteristics of ACI are discussed. Finally, the performance of ACI algorithm is
                 verified by computer simulations and experiment data on the sea. The results show that ACI algorithm has
                 excellent detection ability for signals with unknown waveform under low signal to noise ratio. The studies in
                 this paper show that ACI algorithm has a wide application prospect in underwater detection and other similar
                 fields.
                 Key words Adaptive coherent integration, ARMA model, Narrow-band complex analytic model, Low signal
                 to noise ratio


             2019-04-19 收稿; 2019-06-19 定稿
             国家自然科学基金项目 (51809213), 中央高校基本科研业务费资助项目 (G2018KY0303)
             ∗
             作者简介: 王宏磊 (1987- ), 男, 陕西汉中人, 博士, 助理教授, 研究方向: 水声信号处理, 海洋物理场。
             † 通讯作者 E-mail: wanghonglei@nwpu.edu.cn
   12   13   14   15   16   17   18   19   20   21   22