Page 206 - 应用声学2019年第4期
P. 206

第 38 卷 第 4 期                                                                       Vol. 38, No. 4
             2019 年 7 月                          Journal of Applied Acoustics                      July, 2019

             ⋄ 李启虎院士八十华诞学术论文 ⋄



                 低复杂度的MIMO声呐协方差矩阵重构方法                                                                  ∗



                                                 程 雪    1,2   王英民     1,2†


                                              (1 西北工业大学航海学院       西安   710072)
                                 (2 西北工业大学    海洋声学信息感知工业和信息化部重点实验室             西安   710072)

                摘要    多输入多输出声呐在对目标进行测向时会产生复杂的运算量,从而降低算法的测向效率。针对这一问
                题,提出了一种基于降维变换方法的低复杂度协方差矩阵重构方法。该方法能够抑制噪声,提高目标测向性
                能。首先利用降维变换方法对接收信号进行波束形成,获得降维的协方差矩阵,再对矩阵进行 Toeplitz 处理,
                抑制矩阵的相干性。所得到的新的协方差矩阵,通过特征分解获得噪声子空间和信号子空间,利用 MUSIC 方
                法进行测向。为了进一步降低运算复杂度,利用阵型所满足的旋转不变性,可以采用 ESPRIT 算法对目标进行
                波达方向估计。理论分析和实验结果表明,该方法有效降低了运算复杂度,提高了算法的测向性能。在有限快
                拍数的情况下,与传统测向方法相比,具有运算速度快、目标分辨力强的特点。
                关键词     MIMO 声呐,低复杂度,降维变换,Toeplitz
                中图法分类号: O427.9          文献标识码: A          文章编号: 1000-310X(2019)04-0666-08
                DOI: 10.11684/j.issn.1000-310X.2019.04.025


                A low complexity covariance matrix reconstruction method of MIMO sonar

                                            CHENG Xue   1,2  WANG Yingmin  1,2

                     (1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)
                  (2 Key Laboratory of Ocean Acoustics and Sensing Northwestern Polytechnical University, Ministry of Industry and
                                            Information Technology, Xi’an 710072, China)

                 Abstract  Multiple-input multiple-output (MIMO) sonar will generate complex operation when it is used to
                 estimate the direction of targets, which will lead to the reduction of algorithm efficiency. To solve this problem,
                 a low complexity covariance matrix reconstruction method based on dimension reduction transformation is
                 proposed. This method can help to suppress noise and improve direction finding performance. Firstly, by using
                 the dimension reduction transformation method to form the echo signals, we can obtain a low dimensional
                 covariance matrix. Then, by employing Toeplitz processing of the matrix to suppress coherence, we can achieve
                 the noise subspace and signal subspace by characterizing new covariance matrix. MUSIC algorithm can be
                 used to estimate the direction of targets. In order to further reduce the computational complexity, we can
                 adopt the ESPRIT algorithm to estimate the direction of arrival (DOA) by utilizing the rotation invariance
                 satisfied by the MIMO array. Both theoretical analysis results and numerical simulation results verify that this
                 algorithm effectively reduces the computational complexity, and improves the direction finding performance.
                 In the condition of limited snapshots, compared with the traditional direction finding methods, it has the
                 characteristics of fast calculation speed and strong target resolution.
                 Key words MIMO sonar, Low complexity, Dimension reduction transformation, Toeplitz


             2019-02-08 收稿; 2019-03-25 定稿
             国家自然科学基金项目 (51879221)
             ∗
             作者简介: 程雪 (1988- ), 女, 黑龙江哈尔滨人, 博士研究生, 研究方向: 水下信号与信息处理。
             † 通讯作者 E-mail: ywang@nwpu.edu.cn
   201   202   203   204   205   206   207   208   209   210   211