Page 28 - 应用声学2019年第4期
P. 28

488                                                                                  2019 年 7 月


             样本、环境不确定和分类/预测结果的可解释性问                                Ultrasonics, Ferroelectrics, and Frequency Control, 1992,
             题目前尚鲜有报道。但是,随着深度学习方法的普                                39(5): 567–578.
                                                                [13] 王鹏宇. 线性信号系统与信号不变量: 光度变换微分与声传播
             及进入水声行业的门槛会变低,给水声探测与辨识
                                                                   不变量 [D]. 青岛: 中国海洋大学, 2019.
             应用乃至水声行业带来了新的机遇与挑战。然而,                             [14] Chuprov S D. Interference structure of a sound field in
             作者认为:水声物理基础研究的重要性越显重要,水                               a layered ocean[M]//Brekhovskikh L M, Andreevoi L B.
                                                                   Acoustics of the ocean: current status. Moscow, 1982:
             声物理是实现可解释、可信深度学习应用的关键。                                71–79.
                 本文主要总结了作者及合作者近十年的研究                            [15] Grachev G A. Theory of acoustic field invariants in lay-
             结果及其密切相关的国内外研究。由于作者阅读范                                ered waveguides[J]. Acoustical Physics, 1993, 39: 33–35.
                                                                [16] Zhao Z D, Wu J R, Shang E C. How the thermocline
             围和知识所限,难免有遗漏和疏忽,敬请读者谅解。                               affects the value of the waveguide invariant in a shallow-
                                                                   water waveguide[J]. Journal of the Acoustical Society of
                                                                   America, 2015, 138(1): 223–231.
                            参 考     文   献                       [17] Zhang R H, Su X X, Li F. Improvement of low-frequency
                                                                   acoustic spatial correlation by frequency-shift compensa-
                                                                   tion[J]. Chinese Physics Letters, 2006, 23(6): 1838–1841.
              [1] 李启虎. 进入 21 世纪的声纳技术 [J]. 应用声学, 2002, 21(1):    [18] Wang N. Dispersionless transform and potential applica-
                 13–18.                                            tions in ocean acoustics[C]. Presentation in the 9th West-
                 Li Qihu. Sonar technology enters the 21st century[J]. Ap-  ern Pacific Acoustics Conference, 2009.
                 plied Acoustics, 2002, 21(1): 13–18.           [19] Gao D, Wang N, Wang H. A dedispersion transform for
              [2] Bucker H P. Use of calculated sound fields and matched  sound propagation in shallow water waveguide[J]. Journal
                 field detection to locate sound sources in shallow water[J].  of Computational Acoustics, 2010, 18(3): 245–257.
                 Journal of the Acoustical Society of America, 1976, 59(2):  [20] Touzé G L, Nicolas B, Mars J I, et al. Matched represen-
                 368–373.                                          tations and filters for guided waves[J]. IEEE Transactions
              [3] 何怡, 张仁和. WKBZ 简正波理论应用于匹配场定位 [J]. 自               on Signal Processing, 2009, 57(5): 1783–1795.
                 然科学进展, 1994, 4(1): 118–122.                    [21] Zhou S H, Qi Y B, Ren Y. Frequency invariability of
              [4] 马远良. 匹配场处理 ——水声物理学与信号处理的结合 [J].                  acoustic field and passive source range estimation in shal-
                 电子科技导报, 1996(4): 9–12.                            low water[J]. Science China: Physics, Mechanics and As-
              [5] Baggeroer A B, Kuperman W A, Mikhalevsky P N. An  tronomy, 2014, 57(2): 225–232.
                 overview of matched field methods in ocean acoustics[J].  [22] Niu H, Zhang R, Li Z. Theoretical analysis of warping op-
                 IEEE Oceanic Engineering, 1993, 18(4): 401–424.   erators for non-ideal shallow water waveguides[J]. Journal
              [6] Wolf S N. Experimental determination of modal depth  of the Acoustical Society of America, 2014, 136(1): 53–65.
                 functions from covariance matrix eigenfunction analy-  [23] 翟林, 高大治, 王好忠, 等. 基于波导不变量的双线谱测距多
                 sis[J]. Journal of the Acoustical Society of America, 1987,  值性机理研究 [C]. 2016 年全国声学学术会议, 2016.
                 81(Sl): S64.                                   [24] Baraniuk R, Jones D. Unitary equivalence: a new twist
              [7] Wolf S N, Cooper D K, Orchard B J. Environmentally  on signal processing[J]. IEEE Transactions on Signal Pro-
                 adaptive signal processing in shallow water[C]. Oceans ’93,  cessing, 1995, 43(9): 2269–2282.
                 Engineering in Harmony with Ocean Proceedings IEEE,  [25] D’Spain G L, Kuperman W A. Application of waveguide
                 Piscataway, NJ, 1993.                             invariants to analysis of spectrograms from shallow water
              [8] Hursky P, Hodgkiss W S, Kuperman W A. Extracting  environments that vary in range and azimuth[J]. Jour-
                 modal structure from vertical array ambient noise data  nal of the Acoustical Society of America, 1999, 106(5):
                 in shallow water[J]. Journal of the Acoustical Society of  2454–2468.
                 America, 1995, 98(5): 2971.                    [26] Rouseff D. Effect of shallow water internal waves on
              [9] Yang T C. Data-based matched-mode source localization  ocean acoustic striation patterns[J]. Waves Random Me-
                 for a moving source[J]. Journal of the Acoustical Society  dia, 2001, 11(4): 377–393.
                 of America, 2014, 135(3): 1218–1230.           [27] Song W H, Wang N, Gao D, et al. The influence of mode
             [10] Neilsen T B, Westwood E K. Extraction of acoustic nor-  coupling on waveguide invariant[J]. Journal of the Acous-
                 mal mode depth functions using vertical line array data[J].  tical Society of America, 2017, 142(4): 1848–1857.
                 Journal of the Acoustical Society of America, 2002, 111(2):  [28] Wapenaar K, Thorbecke J, van der Neut J, et
                 748–756.                                          al.  Marchenko imaging[J]. Geophysics, 2014, 79(3):
             [11] Fink M, Prada C, Wu F, et al. Self-focusing in inhomoge-  WA39–WA57.
                 nous media with time reversal acoustic mirrors[C]. IEEE  [29] van der Neut J, Wapenaar K, Thorbecke J, et al. An illus-
                 Ultrasonics Symposium, 1989, 2: 681–686.          tration of adaptive Marchenko imaging[J]. Leading Edge,
             [12] Wu F, Thomas J L, Fink M. Time reversal of ultrasonic  2015, 34(6): 818–822.
                 fields II: experimental results[J]. IEEE Transactions on  [30] Davydenko M, Verschuur D J. Full-wavefield migration-
   23   24   25   26   27   28   29   30   31   32   33