Page 29 - 应用声学2019年第4期
P. 29

第 38 卷 第 4 期                        王宁等: 环境适应处理方法                                           489


                 using surface and internal multiples in imaging[J]. Geo-  nal of the Acoustical Society of America, 2014, 136(5):
                 physical Prospecting, 2017, 65(1): 7–21.          2381–2388.
             [31] Roux P, Kuperman W A, NPAL Group. Extracting co-  [40] Wapenaar K, Broggini F, Slob E, et al. Three-dimensional
                 herent wave fronts from acoustic ambient noise in the  single-sided Marchenko inverse scattering, data-driven fo-
                 ocean[J]. Journal of the Acoustical Society of America,  cusing, Green’s function retrieval, and their mutual rela-
                 2004, 116(4): 1995–2003.                          tions[J]. Physical Review Letter, 2013, 110(7): 084301.
             [32] Godin O A, Brown M G, Zabotin N A, et al. Passive  [41] Berkhout A J. Utilization of multiple scattering: the
                 acoustic measurement of flow velocity in the Straits of  next big step forward in seismic imaging[J]. Geophysical
                 Florida[J]. Geoscience Letters, 2014, 1: 16.
                                                                   Prospecting, 2017, 65: 106–145.
             [33] Li J, Gerstoft P, Gao D Z, et al. Localizing scatterers from
                                                                [42] van der Neut J, Brackenhoff J, Staring M, et al. Single-
                 surf noise cross correlations[J]. Journal of the Acoustical
                                                                   and double-sided Marchenko imaging conditions in acous-
                 Society of America, 2017, 141(1): EL64–EL69.
                                                                   tic media[J]. IEEE Transactions on Computational Imag-
             [34] Li X, Yu G, Wang N, et al.  Flux projection beam-
                                                                   ing, 2018, 4(1): 160–171.
                 forming for monochromatic source localization in enclosed
                                                                [43] Niu H, Reeves E, Gerstoft P. Source localization in an
                 space[J]. Journal of the Acoustical Society of America,
                                                                   ocean wave-guide using supervised machine learning[J].
                 2017, 141(1): EL1–EL5.
                                                                   Journal of the Acoustical Society of America, 2017, 142(3):
             [35] Gerstoft P, Hodgkiss W S, Siderius M, et al. Passive fath-
                                                                   1176–1188.
                 ometer processing[J]. Journal of the Acoustical Society of
                                                                [44] Huang Z, Xu J, Gong Z, et al. Source localization using
                 America, 2008, 123(3): 1297–1305.
                                                                   deep neural networks in a shallow water environment[J].
             [36] Siderius M, Harrison C H, Porter M B. A passive fath-
                 ometer technique for imaging seabed layering using ambi-  Journal of the Acoustical Society of America, 2018, 143(5):
                 ent noise[J]. Journal of the Acoustical Society of America,  2922–2932.
                 2006, 120(3): 1315–1323.                       [45] Wang Y, Peng H. Underwater acoustic source localiza-
             [37] Rose J H. Single-sided autofocusing of sound in layered  tion using generalized regression neural network[J]. Jour-
                 materials[J]. Inverse Problems, 2002, 18(6): 1923–1934.  nal of the Acoustical Society of America, 2018, 143(4):
             [38] Broggini F, Snieder R, Wapenaar K. Focusing the wave  2321–2331.
                 field inside an unknown 1D medium: beyond seismic in-  [46] Halkias X C, Paris S, Glotin H. Classification of mys-
                 terferometry[J]. Geophysics, 2012, 77( 5): A25–A28.  ticete sounds using machine learning techniques[J]. Jour-
             [39] Zhang Y, Wang N, Wang P. One-dimensional single-sided  nal of the Acoustical Society of America, 2013, 134(5):
                 acoustic focusing in a Goupillaud layered model[J]. Jour-  3496–3505.



             附录A



                                                                 e
                                                                 ik 1 r            
                                                               √      0   · · ·  0       
                                 φ 1(z 1) φ 2(z 1) · · · φ N (z 1)    k 1r           φ 1(z s)
                                                               
                                                                                    
                                                                     ik 2 r            
                                                                    e                  
                                φ 1(z 2)  · · ·                 0   √              · · · 
                            Φ =                         ,  a =       k 2r              
                                                                                       
                                  · · ·                                            · · · 
                                                                · · ·      · · ·    
                                                                                          
                                                                                   
                                 φ 1(z M )      φ N (z M )                    e  ik N r  φ N (z s)
                                                                  · · ·        √
                                                                                 k N r
   24   25   26   27   28   29   30   31   32   33   34