Page 79 - 应用声学2019年第4期
P. 79
第 38 卷 第 4 期 时胜国等: 声矢量圆阵宽带相干目标 MVDR 方位估计 539
通过 MVDR 波束形成器估计得到目标方位。仿真 [13] Cao J W, Liu J, Wang J Z, et al. Acoustic vector sensor:
和实验数据处理结果表明:(1) 与 PV -PV -EVR 方 reviews and future perspectives[J]. IET Signal Processing,
2017, 11(1): 1–9.
法相比,P-(V r + V ϕ )-EVR 和 P-V c -EVR 方法具有 [14] Wu Y, Hu Z, Luo H, et al. Source number detectability
更强的噪声抑制能力;与 P-V c -EVR 方法相比,由 by an acoustic vector sensor linear array and performance
analysis[J]. IEEE Journal of Oceanic Engineering, 2014,
于 P-(V r + V ϕ ) 处理方法可有效地增大信号功率, 39(4): 769–778.
P-(V r + V ϕ )-EVR方法具有更低的旁瓣和较尖锐的 [15] Hawkes M, Nehorai A. Acoustic vector-sensor beamform-
ing and Capon direction estimation[J]. IEEE Transactions
谱峰;(2) 与P-(V r +V ϕ )-FBSS 和P-(V r +V ϕ )-Toep on Signal Processing, 1998, 46(9): 2291–2304.
方法相比,P-(V r + V ϕ )-EVR 方法具有更强的解相 [16] Nagananda K G, Anand G V. Subspace intersection
method of high-resolution bearing estimation in shallow
干能力和更好的方位估计性能。
ocean using acoustic vector sensors[J]. Signal Processing,
2010, 90(1): 105–118.
[17] Wang Y, Yang Y X, He Z Y, et al. Array gain for a
参 考 文 献 conformal acoustic vector sensor array: an experimental
study[J]. Chinese Physics B, 2016, 25(12): 124318.
[1] Askari M, Karimi M, Atbaee Z. Robust beamforming in [18] Nehorai A, Paldi E. Acoustic vector-sensor array pro-
circular arrays using phase-mode transformation[J]. IET cessing[J]. IEEE Transactions on Signal Processing, 1994,
Signal Processing, 2013, 7(8): 693–703. 42(9): 2481–2491.
[2] Basikolo T, Arai H. APRD-MUSIC algorithm DOA es- [19] Chen H W, Zhao J W. Wideband MVDR beamforming
timation for reactance based uniform circular array[J]. for acoustic vector sensor linear array[J]. IEE Proceedings-
IEEE Transactions on Antennas & Propagation, 2016, Radar, Sonar and Navigation, 2004, 151(3): 158–162.
64(10): 4415–4422. [20] Chen H W, Zhao J W. Coherent signal-subspace process-
[3] Goossens R, Rogier H, Werbrouck S. UCA Root-MUSIC ing of acoustic vector sensor array for DOA estimation
with sparse uniform circular arrays[J]. IEEE Transactions of wideband sources[J]. Signal Processing, 2005, 85(4):
on Signal Processing, 2008, 56(8): 4095–4099. 837–847.
[4] Wax M, Sheinvald J. Direction finding of coherent signals [21] Nichols B, Sabra K G. Cross-coherent vector sensor pro-
via spatial smoothing for uniform circular arrays[J]. IEEE cessing for spatially distributed glider networks[J]. Jour-
Transactions on Antennas & Propagation, 1994, 42(5): nal of the Acoustical Society of America, 2015, 138(3):
613–620. EL329–EL335.
[5] Tran J M Q D, Hodgkiss W S. Spatial smoothing and min- [22] Zou N, Nehorai A. Circular acoustic vector-sensor array
imum variance beamforming on data from large aperture for mode beamforming[J]. IEEE Transactions on Signal
vertical line arrays[J]. IEEE Transactions on Antennas & Processing, 2009, 57(8): 3041–3052.
Propagation, 1993, 18(1): 15–24. [23] Hawkes M, Nehorai A. Acoustic vector-sensor correlations
[6] Choi Y H. On conditions for the rank restoration in for- in ambient noise[J]. IEEE Journal of Oceanic Engineering,
ward/backward spatial smoothing[J]. IEEE Transactions
2001, 26(3): 337–347.
on Antennas & Propagation, 2002, 50(11): 2900–2901.
[24] 惠俊英, 李春旭, 梁国龙, 等. 声压和振速联合信号处理抗相
[7] Hong S, Wan X R, Ke H Y. Spatial difference smoothing
干干扰 [J]. 声学学报, 2000, 25(4): 389–394.
for coherent sources location in MIMO radar[J]. Signal Hui Junying, Li Chunxu, Liang Guolong, et al. Study on
Processing, 2015, 109: 69–83. the physical basis of pressure and particle velocity com-
[8] Wen J, Liao B, Guo C. Spatial smoothing based methods bined proceessing[J]. Acta Acustica, 2000, 25(4): 389–394.
for direction-of-arrival estimation of coherent signals in
[25] Felisberto P, Rodriguez O, Santos P, et al. Experimental
nonuniform noise[J]. Digital Signal Processing, 2017, 67:
results of underwater cooperative source localization us-
116–122.
ing a single acoustic vector sensor[J]. Sensors, 2013, 13(7):
[9] Han F, Zhang X. An ESPRIT-like algorithm for coherent
DOA estimation[J]. IEEE Antennas & Wireless Propaga- 8856–8878.
tion Letters, 2005, 4(1): 443–446. [26] 白兴宇, 杨德森, 赵春晖. 基于声压振速联合信息处理的
[10] Wu Y, Li G, Hu Z, et al. Unambiguous directions of ar- 声矢量阵相干信号子空间方法 [J]. 声学学报, 2006, 31(5):
410–417.
rival estimation of coherent sources using acoustic vector
sensor linear arrays[J]. IET Radar, Sonar & Navigation, Bai Xingyu, Yang Desen, Zhao Chunhui. The coher-
2015, 9(3): 318–323. ent signal-subspace method based on combined informa-
[11] Choi Y H. ESPRIT-based coherent source localization tion processing of pressure and particle velocity using the
with forward and backward vectors[J]. IEEE Transactions acoustic vector sensor array[J]. Acta Acustica, 2006, 31(5):
on Signal Processing, 2010, 58(12): 6416–6420. 410–417.
[12] 安妍妍, 李赢, 时胜国, 等. 声矢量圆阵宽带相干信号的方位 [27] 杨德森, 朱中锐, 时胜国, 等. 声矢量圆阵相位模态域目标方
估计 [J]. 南京大学学报 (自然科学), 2017, 53(4): 621–628. 位估计 [J]. 声学学报, 2014, 39(1): 19–26.
An Yanan, Li Ying, Shi Shengguo, et al. The direction-of- Yang Desen, Zhu Zhongrui, Shi Shengguo, et al.
arrival estimation for wideband coherent sources using the Direction-of-arrival estimation based on phase modal
circular acoustic vector sensor array[J]. Journal of Nanjing space for a uniform circular acoustic vector-sensor ar-
University (Natural Science), 2017, 53(4): 621–628. ray[J]. Acta Acustica, 2014, 39(1): 19–26.