Page 79 - 应用声学2019年第4期
P. 79

第 38 卷 第 4 期             时胜国等: 声矢量圆阵宽带相干目标 MVDR 方位估计                                        539


             通过 MVDR 波束形成器估计得到目标方位。仿真                           [13] Cao J W, Liu J, Wang J Z, et al. Acoustic vector sensor:
             和实验数据处理结果表明:(1) 与 PV -PV -EVR 方                       reviews and future perspectives[J]. IET Signal Processing,
                                                                   2017, 11(1): 1–9.
             法相比,P-(V r + V ϕ )-EVR 和 P-V c -EVR 方法具有           [14] Wu Y, Hu Z, Luo H, et al. Source number detectability
             更强的噪声抑制能力;与 P-V c -EVR 方法相比,由                         by an acoustic vector sensor linear array and performance
                                                                   analysis[J]. IEEE Journal of Oceanic Engineering, 2014,
             于 P-(V r + V ϕ ) 处理方法可有效地增大信号功率,                      39(4): 769–778.
             P-(V r + V ϕ )-EVR方法具有更低的旁瓣和较尖锐的                   [15] Hawkes M, Nehorai A. Acoustic vector-sensor beamform-
                                                                   ing and Capon direction estimation[J]. IEEE Transactions
             谱峰;(2) 与P-(V r +V ϕ )-FBSS 和P-(V r +V ϕ )-Toep        on Signal Processing, 1998, 46(9): 2291–2304.
             方法相比,P-(V r + V ϕ )-EVR 方法具有更强的解相                  [16] Nagananda K G, Anand G V. Subspace intersection
                                                                   method of high-resolution bearing estimation in shallow
             干能力和更好的方位估计性能。
                                                                   ocean using acoustic vector sensors[J]. Signal Processing,
                                                                   2010, 90(1): 105–118.
                                                                [17] Wang Y, Yang Y X, He Z Y, et al. Array gain for a
                            参 考     文   献                          conformal acoustic vector sensor array: an experimental
                                                                   study[J]. Chinese Physics B, 2016, 25(12): 124318.
              [1] Askari M, Karimi M, Atbaee Z. Robust beamforming in  [18] Nehorai A, Paldi E. Acoustic vector-sensor array pro-
                 circular arrays using phase-mode transformation[J]. IET  cessing[J]. IEEE Transactions on Signal Processing, 1994,
                 Signal Processing, 2013, 7(8): 693–703.           42(9): 2481–2491.
              [2] Basikolo T, Arai H. APRD-MUSIC algorithm DOA es-  [19] Chen H W, Zhao J W. Wideband MVDR beamforming
                 timation for reactance based uniform circular array[J].  for acoustic vector sensor linear array[J]. IEE Proceedings-
                 IEEE Transactions on Antennas & Propagation, 2016,  Radar, Sonar and Navigation, 2004, 151(3): 158–162.
                 64(10): 4415–4422.                             [20] Chen H W, Zhao J W. Coherent signal-subspace process-
              [3] Goossens R, Rogier H, Werbrouck S. UCA Root-MUSIC  ing of acoustic vector sensor array for DOA estimation
                 with sparse uniform circular arrays[J]. IEEE Transactions  of wideband sources[J]. Signal Processing, 2005, 85(4):
                 on Signal Processing, 2008, 56(8): 4095–4099.     837–847.
              [4] Wax M, Sheinvald J. Direction finding of coherent signals  [21] Nichols B, Sabra K G. Cross-coherent vector sensor pro-
                 via spatial smoothing for uniform circular arrays[J]. IEEE  cessing for spatially distributed glider networks[J]. Jour-
                 Transactions on Antennas & Propagation, 1994, 42(5):  nal of the Acoustical Society of America, 2015, 138(3):
                 613–620.                                          EL329–EL335.
              [5] Tran J M Q D, Hodgkiss W S. Spatial smoothing and min-  [22] Zou N, Nehorai A. Circular acoustic vector-sensor array
                 imum variance beamforming on data from large aperture  for mode beamforming[J]. IEEE Transactions on Signal
                 vertical line arrays[J]. IEEE Transactions on Antennas &  Processing, 2009, 57(8): 3041–3052.
                 Propagation, 1993, 18(1): 15–24.               [23] Hawkes M, Nehorai A. Acoustic vector-sensor correlations
              [6] Choi Y H. On conditions for the rank restoration in for-  in ambient noise[J]. IEEE Journal of Oceanic Engineering,
                 ward/backward spatial smoothing[J]. IEEE Transactions
                                                                   2001, 26(3): 337–347.
                 on Antennas & Propagation, 2002, 50(11): 2900–2901.
                                                                [24] 惠俊英, 李春旭, 梁国龙, 等. 声压和振速联合信号处理抗相
              [7] Hong S, Wan X R, Ke H Y. Spatial difference smoothing
                                                                   干干扰 [J]. 声学学报, 2000, 25(4): 389–394.
                 for coherent sources location in MIMO radar[J]. Signal  Hui Junying, Li Chunxu, Liang Guolong, et al. Study on
                 Processing, 2015, 109: 69–83.                     the physical basis of pressure and particle velocity com-
              [8] Wen J, Liao B, Guo C. Spatial smoothing based methods  bined proceessing[J]. Acta Acustica, 2000, 25(4): 389–394.
                 for direction-of-arrival estimation of coherent signals in
                                                                [25] Felisberto P, Rodriguez O, Santos P, et al. Experimental
                 nonuniform noise[J]. Digital Signal Processing, 2017, 67:
                                                                   results of underwater cooperative source localization us-
                 116–122.
                                                                   ing a single acoustic vector sensor[J]. Sensors, 2013, 13(7):
              [9] Han F, Zhang X. An ESPRIT-like algorithm for coherent
                 DOA estimation[J]. IEEE Antennas & Wireless Propaga-  8856–8878.
                 tion Letters, 2005, 4(1): 443–446.             [26] 白兴宇, 杨德森, 赵春晖. 基于声压振速联合信息处理的
             [10] Wu Y, Li G, Hu Z, et al. Unambiguous directions of ar-  声矢量阵相干信号子空间方法 [J]. 声学学报, 2006, 31(5):
                                                                   410–417.
                 rival estimation of coherent sources using acoustic vector
                 sensor linear arrays[J]. IET Radar, Sonar & Navigation,  Bai Xingyu, Yang Desen, Zhao Chunhui.  The coher-
                 2015, 9(3): 318–323.                              ent signal-subspace method based on combined informa-
             [11] Choi Y H. ESPRIT-based coherent source localization  tion processing of pressure and particle velocity using the
                 with forward and backward vectors[J]. IEEE Transactions  acoustic vector sensor array[J]. Acta Acustica, 2006, 31(5):
                 on Signal Processing, 2010, 58(12): 6416–6420.    410–417.
             [12] 安妍妍, 李赢, 时胜国, 等. 声矢量圆阵宽带相干信号的方位               [27] 杨德森, 朱中锐, 时胜国, 等. 声矢量圆阵相位模态域目标方
                 估计 [J]. 南京大学学报 (自然科学), 2017, 53(4): 621–628.      位估计 [J]. 声学学报, 2014, 39(1): 19–26.
                 An Yanan, Li Ying, Shi Shengguo, et al. The direction-of-  Yang Desen,  Zhu Zhongrui,  Shi Shengguo,  et al.
                 arrival estimation for wideband coherent sources using the  Direction-of-arrival estimation based on phase modal
                 circular acoustic vector sensor array[J]. Journal of Nanjing  space for a uniform circular acoustic vector-sensor ar-
                 University (Natural Science), 2017, 53(4): 621–628.  ray[J]. Acta Acustica, 2014, 39(1): 19–26.
   74   75   76   77   78   79   80   81   82   83   84