Page 29 - 应用声学2019年第5期
P. 29
第 38 卷 第 5 期 张海燕等: 扩散场重建格林函数检测钢轨近表面缺陷 781
成像的信噪比,当激励频率相同时,尤其相控阵阵元 [6] Yang Y, Xiao L, Qu W Z, et al. Passive detection and
数量越多,重建格林函数的信号就越好,为近表面成 localization of fatigue cracking in aluminum plates using
Green’s function reconstruction from ambient noise[J]. Ul-
像提供了更多的可能性和选择性。
trasonics, 2017, 81: 187–195.
(2) 两种超声相控阵探头验证了钢轨近表面成 [7] 李国富, 黎洁, 高大治, 等. 利用环境噪声互相关实现散射体
像的可实现性,具有重大的实际工程意义。波数成 无源成像 [J]. 声学学报, 2016, 41(1): 49–58.
像方法的优点是横向分辨率率高,呈现出来的缺 Li Guofu, Li Jie, Gao Dazhi, et al. Passive imaging of
scatterers based on cross-correlations of ambient noise[J].
陷形状与钢轨实际的缺陷完全吻合,清晰地还原
Acta Acustica, 2016, 41(1): 49–58.
了被噪声湮没的缺陷信息,同时该方法也保留了 [8] Campillo M. Phase and correlation in random seismic
其他区域的有效信息,成功地显示了距钢轨表面 fields and the reconstruction of the Green function[J].
5 ∼ 10 mm处的缺陷,信噪比高,成像效果显著。 Pure and Applied Geophysics, 2006, 163(2–3): 475–502.
[9] Chaves E J, Schwartz S Y. Monitoring transient changes
(3) 论文聚焦钢轨近表面的缺陷成像问题,相
within over pressured regions of subduction zones using
控阵探头的配置中心频率为 1 MHz 时,其波长 λ 为 ambient seismic noise[J]. Science Advances, 2016, 2(1):
5.9 mm,缺陷的上边缘距离钢轨仅5 mm(小于一个 E1501289.
波长 λ),提出的方案有效解决近表面成像的问题, [10] Chehami L, Rosny J, Prada C, et al. Experimental
study of passive defect localization in plates using ambient
把早期时间噪声湮没的缺陷信息完美地恢复出来。
noise[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 2015, 62(8): 1544–1553.
参 考 文 献 [11] Chehami L, Moulin E, Rosny J, et al. Detection and lo-
calization of a defect in a reverberant plate using acous-
tic field correlation[J]. Journal of Applied Physics, 2014,
[1] Lobkis O I, Weaver R L. On the emergence of the Green’s
115(10): 104901.
function in the correlations of a diffuse field[J]. Jour-
[12] Snieder R. Retrieving the Green’s function of the diffusion
nal of the Acoustical Society of America, 2001, 110(6):
equation from the response to a random forcing[J]. Physi-
3011–3017.
cal Review E Statistical Nonlinear & Soft Matter Physics,
[2] Weaver R L, Lobkis O I. On the emergence of the Green’s
2006, 74(2): 046620.
function in the correlations of a diffuse field: pulse-
[13] Potter J N, Wilcox P D, Croxford A J. Diffuse field full
echo using thermal phonons[J]. Ultrasonics, 2002, 40(1–8):
matrix capture for near surface ultrasonic imaging[J]. Ul-
435–439.
trasonics, 2018, 82: 44–48.
[3] Sabra K G, Srivastava A, Lanza D S F, et al. Structural
health monitoring by extraction of coherent guided waves [14] Sadoudi L, Moulin E, Assaad J, et al. Experimental study
from diffuse fields[J]. Journal of the Acoustical Society of of acoustic noise correlation technique for passive monitor-
America, 2008, 123(1): 8–13. ing of rails[J]. Materials Sciences and Applications, 2016,
[4] Duroux A, Sabra K G, Ayers J, et al. Using cross- 7(12): 848–862.
correlations of elastic diffuse fields for attenuation tomog- [15] Hunter A J, Drinkwater B W, Wilcox P D. The wavenum-
raphy of structural damage[J]. Journal of the Acoustical ber algorithm for full-matrix imaging using an ultrasonic
Society of America, 2010, 127(6): 3311–3314. array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
[5] Duroux A, Sabra K G, Ayers J, et al. Extracting guided and Frequency Control, 2008, 55(11): 2450–2462.
waves from cross-correlations of elastic diffuse fields: ap- [16] Muller A, Robertson-Welsh B, Gaydecki P, et al. Struc-
plications to remote structural health monitoring[J]. Jour- tural health monitoring using lamb wave reflections and
nal of the Acoustical Society of America, 2010, 127(1): total focusing method for image reconstruction[J]. Applied
204–215. Composite Materials, 2017, 24(2): 553–573.