Page 29 - 应用声学2019年第5期
P. 29

第 38 卷 第 5 期              张海燕等: 扩散场重建格林函数检测钢轨近表面缺陷                                          781


             成像的信噪比,当激励频率相同时,尤其相控阵阵元                             [6] Yang Y, Xiao L, Qu W Z, et al. Passive detection and
             数量越多,重建格林函数的信号就越好,为近表面成                               localization of fatigue cracking in aluminum plates using
                                                                   Green’s function reconstruction from ambient noise[J]. Ul-
             像提供了更多的可能性和选择性。
                                                                   trasonics, 2017, 81: 187–195.
                 (2) 两种超声相控阵探头验证了钢轨近表面成                          [7] 李国富, 黎洁, 高大治, 等. 利用环境噪声互相关实现散射体
             像的可实现性,具有重大的实际工程意义。波数成                                无源成像 [J]. 声学学报, 2016, 41(1): 49–58.
             像方法的优点是横向分辨率率高,呈现出来的缺                                 Li Guofu, Li Jie, Gao Dazhi, et al. Passive imaging of
                                                                   scatterers based on cross-correlations of ambient noise[J].
             陷形状与钢轨实际的缺陷完全吻合,清晰地还原
                                                                   Acta Acustica, 2016, 41(1): 49–58.
             了被噪声湮没的缺陷信息,同时该方法也保留了                               [8] Campillo M. Phase and correlation in random seismic
             其他区域的有效信息,成功地显示了距钢轨表面                                 fields and the reconstruction of the Green function[J].
             5 ∼ 10 mm处的缺陷,信噪比高,成像效果显著。                            Pure and Applied Geophysics, 2006, 163(2–3): 475–502.
                                                                 [9] Chaves E J, Schwartz S Y. Monitoring transient changes
                 (3) 论文聚焦钢轨近表面的缺陷成像问题,相
                                                                   within over pressured regions of subduction zones using
             控阵探头的配置中心频率为 1 MHz 时,其波长 λ 为                          ambient seismic noise[J]. Science Advances, 2016, 2(1):
             5.9 mm,缺陷的上边缘距离钢轨仅5 mm(小于一个                           E1501289.
             波长 λ),提出的方案有效解决近表面成像的问题,                           [10] Chehami L, Rosny J, Prada C, et al.  Experimental
                                                                   study of passive defect localization in plates using ambient
             把早期时间噪声湮没的缺陷信息完美地恢复出来。
                                                                   noise[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
                                                                   and Frequency Control, 2015, 62(8): 1544–1553.
                            参 考     文   献                       [11] Chehami L, Moulin E, Rosny J, et al. Detection and lo-
                                                                   calization of a defect in a reverberant plate using acous-
                                                                   tic field correlation[J]. Journal of Applied Physics, 2014,
              [1] Lobkis O I, Weaver R L. On the emergence of the Green’s
                                                                   115(10): 104901.
                 function in the correlations of a diffuse field[J]. Jour-
                                                                [12] Snieder R. Retrieving the Green’s function of the diffusion
                 nal of the Acoustical Society of America, 2001, 110(6):
                                                                   equation from the response to a random forcing[J]. Physi-
                 3011–3017.
                                                                   cal Review E Statistical Nonlinear & Soft Matter Physics,
              [2] Weaver R L, Lobkis O I. On the emergence of the Green’s
                                                                   2006, 74(2): 046620.
                 function in the correlations of a diffuse field:  pulse-
                                                                [13] Potter J N, Wilcox P D, Croxford A J. Diffuse field full
                 echo using thermal phonons[J]. Ultrasonics, 2002, 40(1–8):
                                                                   matrix capture for near surface ultrasonic imaging[J]. Ul-
                 435–439.
                                                                   trasonics, 2018, 82: 44–48.
              [3] Sabra K G, Srivastava A, Lanza D S F, et al. Structural
                 health monitoring by extraction of coherent guided waves  [14] Sadoudi L, Moulin E, Assaad J, et al. Experimental study
                 from diffuse fields[J]. Journal of the Acoustical Society of  of acoustic noise correlation technique for passive monitor-
                 America, 2008, 123(1): 8–13.                      ing of rails[J]. Materials Sciences and Applications, 2016,
              [4] Duroux A, Sabra K G, Ayers J, et al.  Using cross-  7(12): 848–862.
                 correlations of elastic diffuse fields for attenuation tomog-  [15] Hunter A J, Drinkwater B W, Wilcox P D. The wavenum-
                 raphy of structural damage[J]. Journal of the Acoustical  ber algorithm for full-matrix imaging using an ultrasonic
                 Society of America, 2010, 127(6): 3311–3314.      array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
              [5] Duroux A, Sabra K G, Ayers J, et al. Extracting guided  and Frequency Control, 2008, 55(11): 2450–2462.
                 waves from cross-correlations of elastic diffuse fields: ap-  [16] Muller A, Robertson-Welsh B, Gaydecki P, et al. Struc-
                 plications to remote structural health monitoring[J]. Jour-  tural health monitoring using lamb wave reflections and
                 nal of the Acoustical Society of America, 2010, 127(1):  total focusing method for image reconstruction[J]. Applied
                 204–215.                                          Composite Materials, 2017, 24(2): 553–573.
   24   25   26   27   28   29   30   31   32   33   34