Page 58 - 《应用声学》2019年第6期
P. 58

960                                                                                 2019 年 11 月


             并用试验验证了有限元模型的仿真效果。主要结论                                Ma Dayou. General theory and design of microperforated-
             如下;                                                   panel absorbers[J]. Acta Acustica, 1997, 22(5): 385–393.
                                                                 [4] Liu J, Herrin D W. Enhancing micro-perforated panel at-
                 (1) 吸声系数仿真结果与试验结果趋势一致,
                                                                   tenuation by partitioning the adjoining cavity[J]. Applied
             存在误差主要是因为现有仿真模型忽略了金属纤                                 Acoustics, 2010, 71(2): 120–127.
             维在流体中的振动、金属纤维与周围声场的声能热                              [5] Wang C, Cheng L, Pan J, et al. Sound absorption of a
                                                                   micro-perforated panel backed by an irregular-shaped cav-
             能交换、试验样品与几何模型之间的差异等因素;
                                                                   ity[J]. Journal of the Acoustical Society of America, 2010,
                 (2) 对声阻抗的仿真结果表明,穿入金属纤维                            127(1): 238–246.
             导致微孔内的黏滞效应增加,声阻增加,而高声阻会                             [6] Park S H. Acoustic properties of micro-perforated panel
                                                                   absorbers backed by Helmholtz resonators for the im-
             引起吸声系数的降低,而声抗变化不大;
                                                                   provement of low-frequency sound absorption[J]. Journal
                 (3) 分析法向质点速度分布云图发现,随着穿                            of Sound and Vibration, 2013, 332(20): 4895–4911.
             入金属纤维数量的增加,黏滞效应引起的低质点速                              [7] Herdtle T, Bolton J S, Kim N N, et al. Transfer impedance
                                                                   of microperforated materials with tapered holes[J]. Jour-
             度区域增大,这符合吸声系数和声阻抗分析的趋势。
                                                                   nal of the Acoustical Society of America, 2013, 134(6):
                 试验结果及微穿孔板吸声原理表明,考虑黏滞                              4752–4762.
             效应的有限元模型可以有效模拟穿入纤维前后微                               [8] Chin D, Yahya M, Din N, et al.  Acoustic properties
                                                                   of biodegradable composite micro-perforated panel(BC-
             穿孔板的声学特性,证明有限元仿真方法适用于典
                                                                   MPP) made from kenaf fiber and polylactic acid(PLA)[J].
             型微穿孔板和穿纤维微穿孔板的声学研究。因此,                                Applied Acoustics, 2018, 138: 179–187.
             有限元仿真方法适用于结构相对复杂的微穿孔结                               [9] Li C, Cazzolato B, Zander A. Acoustic impedance of mi-
                                                                   cro perforated membranes: velocity continuity condition
             构的声学建模,仿真结果有效,能直观地体现微孔复
                                                                   at the perforation boundary[J]. Journal of the Acoustical
             杂结构的影响,值得在微穿孔板相关研究中继续深                                Society of America, 2016, 139(1): 93–103.
             入研究和应用。                                            [10] Temiz M, Tournadre J, Arteaga I, et al. A parametric
                                                                   study of flexible micro-perforated panels with a patch-
                                                                   impedance numerical model[J]. Journal of the Acoustical
                                                                   Society of America, 2017, 141(5): 3797–3802.
                            参 考     文   献
                                                                [11] Bolton J S, Kim N N. Use of CFD to calculate the dynamic
                                                                   resistive end correction for microperforated materials[J].
              [1] Pfretzschnerm J, Cobo P, Simon F, et al. Micro perfo-  Acoustics Australia, 2010, 38(3): 134–139.
                 rated insertion units: an alternative strategy to design mi-  [12] Carbajo J, Ramis J, Godinho L, et al. A finite element
                 cro perforated panels[J]. Applied Acoustics, 2006, 67(1):  model of perforated panel absorbers including viscother-
                 62–73.                                            mal effects[J]. Applied Acoustics, 2015, 90: 1–8.
              [2] 马大猷. 微穿孔板吸声结构的理论和设计 [J]. 中国科学,                [13] 马大猷. 微穿孔板的实际极限 [J]. 声学学报, 2006, 31(6):
                 1975(1): 38–50.                                   481–484.
              [3] 马大猷. 微穿孔板吸声体的准确理论和设计 [J]. 声学学报,                  MA Dayou.  Practical absorption limits of MPP ab-
                 1997, 22(5): 385–393.                             sorbers[J]. Acta Acustica, 2006, 31(6): 481–484.
   53   54   55   56   57   58   59   60   61   62   63