Page 23 - 《应用声学》2020年第1期
P. 23

第 39 卷 第 1 期          郭俊鑫等: 含平行裂缝储层中地震波频散、衰减及频变各向异性                                          19


             [24] Gurevich B. Elastic properties of saturated porous rocks  ented spheroidal inclusions[J]. Journal of the Mechanics
                 with aligned fractures[J]. Journal of Applied Geophysics,  and Physics of Solids, 1993, 41(10): 1589–1598.
                 2003, 54(3/4): 203–218.                        [43] Smyshlyaev V P, Willis J R. Self-consistent analysis of
             [25] Brajanovski M, Gurevich B, Schoenberg M. A model for  waves in a matrix-inclusion composite-III. A matrix con-
                 P-wave attenuation and dispersion in a porous medium  taining cracks[J]. Journal of the Mechanics and Physics of
                 permeated by aligned fractures[J]. Geophysical Journal  Solids, 1993, 41(8): 1809–1824.
                 International, 2005, 163(1): 372–384.          [44] Kawahara J, Yamashita T. Scattering of elastic waves by
             [26] Brajanovski M, Müller T M, Gurevich B. Characteristic  a fracture zone containing randomly distributed cracks[J].
                 frequencies of seismic attenuation due to wave-induced  Pure and Applied Geophysics, 1992, 139(1): 121–144.
                 fluid flow in fractured porous media[J]. Geophysical Jour-  [45] Murai Y. Scattering attenuation, dispersion and reflection
                 nal International, 2006, 166(1): 574–578.         of SH waves in two-dimensional elastic media with densely
             [27] Galvin R J, Gurevich B. Interaction of an elastic  distributed cracks[J]. Geophysical Journal International,
                 wave with a circular crack in a fluid-saturated porous  2007, 168(1): 211–223.
                 medium[J]. Applied Physics Letter, 2006, 88(5): 061918.
                                                                [46] Sabina F J, Smyshlyaev V P, Willis J R. Self-consistent
             [28] Galvin R J, Gurevich B. Scattering of a longitudinal wave
                                                                   analysis of waves in a matrix-inclusion composite-I.
                 by a circular crack in a fluid-saturated porous medium[J].
                                                                   Aligned spheroidal inclusions[J]. Journal of the Mechanics
                 International Journal of Solids and Structures, 2007,
                                                                   and Physics of Solids, 1993, 41(10): 1573–1588.
                 44(22/23): 7389–7398.
                                                                [47] Eriksson A S, Bostrom A, Datta S K. Ultrasonic wave
             [29] Gurevich B, Brajanovski M, Galvin R J, et al.  P-
                                                                   propagation through a cracked solid[J]. Wave Motion,
                 wave dispersion and attenuation in fractured and  1995, 22(2): 297–310.
                 porous reservoirs-poroelasticity approach[J]. Geophysical  [48] Guo J, Rubino J G, Barbosa N D, et al. Seismic dis-
                 Prospecting, 2009, 57(1): 225–237.                persion and attenuation in saturated porous rocks with
             [30] Mal A K. Interaction of elastic waves with a penny-  aligned fractures of finite thickness: theory and numerical
                 shaped crack[J]. International Journal of Engineering Sci-
                                                                   simulations–Part 1: P-wave perpendicular to the fracture
                 ence, 1970, 8(4): 381–388.
                                                                   plane[J]. Geophysics, 2018, 83(1): WA49–WA62.
             [31] Mal A K. Interaction of elastic waves with a Griffith
                                                                [49] Guo J, Rubino J G, Barbosa N D, et al. Seismic dis-
                 crack[J]. International Journal of Engineering Science,
                                                                   persion and attenuation in saturated porous rocks with
                 1970, 8(9): 763–776.
                                                                   aligned fractures of finite thickness: theory and numerical
             [32] Martin P A. Diffraction of elastic wave by a penny-shaped
                                                                   simulations–Part 2: Frequency-dependent anisotropy[J].
                 crack[J]. Proceedings of the Royal Society A, 1981, 378:
                 263–285.                                          Geophysics, 2018, 83(1): WA63–WA71.
             [33] Krenk S, Schmidt H. Elastic wave scattering by a circular  [50] Schoenberg M, Sayers C M. Seismic anisotropy of frac-
                 crack[J]. Philosophical Transactions of the Royal Society  tured rock[J]. Geophysics, 1995, 60(1): 204–211.
                 A, 1982, 308: 167–198.                         [51] Krzikalla F, Müller T. Anisotropic P-SV-wave dispersion
             [34] Keogh P S. High-frequency scattering of a normally  and attenuation due to inter-layer flow in thinly layered
                 incident plane compressional wave by a penny-shaped  porous rocks[J]. Geophysics, 2011, 76(2): WA135–WA145.
                 crack[J]. The Quarterly Journal of Mechanics & Applied  [52] Galvin R J, Gurevich B. Frequency-dependent anisotropy
                 Mathematics, 1986, 39(3): 535–566.                of porous rocks with aligned fractures[J]. Geophysical
             [35] Martin P A, Rizzo F J. On boundary integral equations  Prospecting, 2015, 63(1): 141–150.
                 for crack problems[J]. Proceedings of the Royal Society A,  [53] Lambert G, Gurevich B, Brajanovski M. Frequency de-
                 1989, 421: 341–355.                               pendent anisotropy of fractured porous rocks[C]. 67th An-
             [36] Foldy L L. The multiple scattering of waves I. General the-  nual International Conference and Exhibition, EAGE, Ex-
                 ory of isotropic scattering by randomly distributed scat-  tended Abstracts, 2005.
                 terers[J]. Physical Review, 1945, 67(3/4): 107–119.  [54] Rubino J G, Caspari E, Müller T M, et al. Numerical up-
             [37] Kikuchi M. Dispersion and attenuation of elastic waves  scaling in 2D heterogeneous poroelastic rocks: anisotropic
                 due to multiple scattering from inclusions[J]. Physics of  attenuation and dispersion of seismic waves[J]. Jour-
                 the Earth and Planetary Interiors, 1981, 25(1): 159–162.  nal of Geophysical Research-Solid Earth, 2016, 121(9):
             [38] Zhang C H, Achenbach J D. Effective wave velocity and  6698–6721.
                 attenuation in a material with distributed penny-shaped  [55] Krief M, Garat J, Stellingwerff J, et al. A petrophysi-
                 cracks[J]. International Journal of Solids and Structures,  cal interpretation using the velocities of P and S waves
                 1991, 27(5): 751–767.                             (full waveform inversion)[J]. The Log Analyst, 1990, 31:
             [39] Zhang C H, Gross D. Wave attenuation and dispersion  355–369.
                 in randomly cracked solids–I. slit cracks[J]. International  [56] Guo J, Shuai D, Wei J, et al. P-wave dispersion and atten-
                 Journal of Engineering Science, 1993, 31(5): 841–858.
                                                                   uation due to scattering by aligned fluid saturated frac-
             [40] Zhang C H, Gross D. Wave attenuation and dispersion in
                                                                   tures with finite thickness: theory and experiment[J]. Geo-
                 randomly cracked solids–II. penny-shaped cracks[J]. In-
                                                                   physical Journal International, 2018, 215(2): 2114–2133.
                 ternational Journal of Engineering Science, 1993, 31(5):
                                                                [57] Wei J, Di B, Ding P. Effect of crack aperture on P-
                 859–872.
                                                                   wave velocity and dispersion[J]. Applied Geophysics, 2013,
             [41] Kawahara J. Scattering of P, SV waves by random dis-  10(1): 125–133.
                 tributions of aligned open cracks[J]. Journal of Physics of  [58] Guo J. Seismic dispersion, attenuation, and frequency-
                 the Earth, 1992, 40: 517–524.                     dependent anisotropy of fractured reservoirs[D]. Perth:
             [42] Smyshlyaev V P, Willis J R. Self-consistent analysis of  Curtin University, 2018: 155–167.
                 waves in a matrix-inclusion composite-II. Randomly ori-
   18   19   20   21   22   23   24   25   26   27   28