Page 22 - 《应用声学》2020年第1期
P. 22
18 2020 年 1 月
射机制的低频区域均较易发生在地震频带内,故裂 its influence on reservoir property[J]. Oil & Gas Geology,
缝厚度可对地震数据产生较大影响,应予以考虑,同 2019, 40(1): 41–49.
[8] 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝
时其为利用地震数据反演裂缝厚度提供了理论基 发育主控因素及对产能的影响 [J]. 石油与天然气地质, 2016,
础。裂缝厚度的探测可为储层有效渗透率等参数的 37(5): 799–808.
Guo Xusheng, Hu Dongfeng, Wei Xiangfeng, et al. Main
预测提供重要信息,因此对于油气勘探开发具有重 controlling factors on shale fractures and their influences
要意义。当流体运动机制与散射机制的特征频率相 on production capacity in Jiaoshiba area, the Sichuan
Basin[J]. Oil & Gas Geology, 2016, 37(5): 799–808.
近时,两者可发生耦合,针对此,本文作者及合作者
[9] Peacock S, McCann C, Sothcott J, et al. Experimen-
利用频变裂缝流体体积模量的方法对散射模型的 tal measurements of seismic attenuation in microfractured
边界条件进行改进,进而考察了两者的耦合作用。 sedimentary rock[J]. Geophysics, 1994, 59(9): 1342–1351.
[10] Maultzsch S, Chapman M, Liu E, et al. Modelling
结果表明,当流体运动机制与散射机制发生耦合时, frequency-dependent seismic anisotropy in fluid-saturated
频散与衰减特征会发生明显变化,在实际应用中需 rock with aligned fractures: implication of fracture size
estimation from anisotropic measurements[J]. Geophysi-
要进行考虑。 cal Prospecting, 2003, 51(4): 381–392.
[11] Maultzsch S, Chapman M, Liu E, et al. Modelling and
analysis of attenuation anisotropy in multi-azimuth VSP
参 考 文 献 data from the Clair field[J]. Geophysical Prospecting,
2007, 55(4): 627–642.
[1] 吴永平, 杨池银, 王喜双. 渤海湾盆地北部奥陶系潜山油气藏 [12] Clark R, Benson P, Carter A, et al. Anisotropic P-wave
成藏组合及勘探技术 [J]. 石油勘探与开发, 2000, 27(4): 1–4, attenuation measured from a multi-azimuth surface seis-
11. mic reflection survey[J]. Geophysical Prospecting, 2009,
Wu Yongping, Yang Chiyin, Wang Xishuang. Ordovician 57(4): 835–845.
buried hill reservoir plays and exploration technique of [13] Müller T M, Gurevich B, Lebedev M. Seismic wave atten-
northern Bohai Bay basin[J]. Petroleum Exploration and uation and dispersion resulting from wave-induced flow
Development, 2000, 27(4): 1–4, 11. in porous rocks—A review[J]. Geophysics, 2010, 75(4):
[2] 邱隆伟, 畅通, 张营革, 等. 义东地区碳酸盐岩储层裂缝特征、 75A147–75A164.
期次及成因机制 [J]. 东北石油大学学报, 2018, 42(4): 16–24, [14] Liu E, Queen J H, Li X Y, et al. Observation and anal-
6. ysis of frequency-dependent anisotropy from a multicom-
Qiu Longwei, Chang Tong, Zhang Yingge, et al. Fea- ponent VSP at Bluebell-Altamont field, Utah[J]. Journal
tures and stages, formation mechanism of fracture of car- of Applied Geophysics, 2003, 54(3/4): 319–333.
bonate reservoir in Yidong area[J]. Journal of Northeast [15] Liu E, Chapman M, Varela I, et al. Velocity and attenua-
Petroleum University, 2018, 42(4): 16–24, 6. tion anisotropy: implication of seismic fracture character-
[3] 肖阳, 刘国平, 韩春元, 等. 冀中坳陷深层碳酸盐岩储层天然裂 izations[J]. The Leading Edge, 2007, 26(9): 1170–1174.
缝发育特征与主控因素 [J]. 天然气工业, 2018, 38(7): 33–42. [16] Rubino J G, Müller T M, Guarracino L, et al. Seis-
Xiao Yang, Liu Guoping, Han Chunyuan, et al. Develop- moacoustic signatures of fractures connectivity[J]. Jour-
ment characteristics and main controlling factors of nat- nal of Geophysical Research: Solid Earth, 2014, 119(2):
ural fractures in deep carbonate reservoirs in the Jizhong 2252–2271.
Depression[J]. Natural Gas Industry, 2018, 38(7): 33–42. [17] Hudson J A, Liu E, Crampin S. The mechanical proper-
[4] Bush I. An integrated approach to fracture characteriza- ties of materials with interconnected cracks and pores[J].
tion[J]. Oil Review Middle East, 2010, 2: 88–91. Geophysical Journal International, 1996, 124(1): 105–112.
[5] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页 [18] Chapman M, Zatsepin S V, Crampin S. Derivation of a
岩气勘探和开发的影响 [J]. 天然气地球科学, 2011, 22(2): microstructural poroelastic model[J]. Geophysical Journal
525–532. International, 2002, 151(1): 427–451.
Long Pengyu, Zhang Jinchuan, Tang Xuan, et al. Feature [19] Chapman M. Frequency dependent anisotropy due to
of muddy shale fissure and its effect for shale gas explo- mesoscale fractures in the presence of equant porosity[J].
ration and development[J]. Natural Gas Geoscience, 2011, Geophysical Prospecting, 2003, 51(4): 369–379.
22(2): 525–532. [20] Chapman M, Liu E, Li X Y. The influence of fluid-
[6] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含 sensitive dispersion and attenuation on AVO analysis[J].
气性的影响 [J]. 地学前缘, 2012, 19(1): 212–220. Geophysical Journal International, 2006, 167(1): 89–105.
Ding Wenlong, Li Chao, Li Chunyan, et al. Dominant fac- [21] Jakobsen M, Johansen T A, McCann C. The acoustic sig-
tor of fracture development in shale and its relationship to nature of fluid flow in complex porous media[J]. Journal
gas accumulation[J]. Earth Science Frontiers, 2012, 19(1): of Applied Geophysics, 2003, 54(2): 219–246.
212–220. [22] Jakobsen M, Hudson J A. Visco-elastic waves in rock-
[7] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类 like composites[J]. Studia Geophysica et Geodaetica, 2003,
型及其对储层物性影响 [J]. 石油与天然气地质, 2019, 40(1): 47(3): 793–826.
41–49. [23] Jakobsen M. The interacting inclusion model of wave-
Wang Hu, He Zhiliang, Zhang Yonggui, et al. Microfrac- induced fluid flow[J]. Geophysical Journal International,
ture types of marine shale reservoir of Sichuan Basin and 2004, 158(2): 1168–1176.