Page 22 - 《应用声学》2020年第1期
P. 22

18                                                                                   2020 年 1 月


             射机制的低频区域均较易发生在地震频带内,故裂                                its influence on reservoir property[J]. Oil & Gas Geology,
             缝厚度可对地震数据产生较大影响,应予以考虑,同                               2019, 40(1): 41–49.
                                                                 [8] 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝
             时其为利用地震数据反演裂缝厚度提供了理论基                                 发育主控因素及对产能的影响 [J]. 石油与天然气地质, 2016,
             础。裂缝厚度的探测可为储层有效渗透率等参数的                                37(5): 799–808.
                                                                   Guo Xusheng, Hu Dongfeng, Wei Xiangfeng, et al. Main
             预测提供重要信息,因此对于油气勘探开发具有重                                controlling factors on shale fractures and their influences
             要意义。当流体运动机制与散射机制的特征频率相                                on production capacity in Jiaoshiba area, the Sichuan
                                                                   Basin[J]. Oil & Gas Geology, 2016, 37(5): 799–808.
             近时,两者可发生耦合,针对此,本文作者及合作者
                                                                 [9] Peacock S, McCann C, Sothcott J, et al.  Experimen-
             利用频变裂缝流体体积模量的方法对散射模型的                                 tal measurements of seismic attenuation in microfractured
             边界条件进行改进,进而考察了两者的耦合作用。                                sedimentary rock[J]. Geophysics, 1994, 59(9): 1342–1351.
                                                                [10] Maultzsch S, Chapman M, Liu E, et al.  Modelling
             结果表明,当流体运动机制与散射机制发生耦合时,                               frequency-dependent seismic anisotropy in fluid-saturated
             频散与衰减特征会发生明显变化,在实际应用中需                                rock with aligned fractures: implication of fracture size
                                                                   estimation from anisotropic measurements[J]. Geophysi-
             要进行考虑。                                                cal Prospecting, 2003, 51(4): 381–392.
                                                                [11] Maultzsch S, Chapman M, Liu E, et al. Modelling and
                                                                   analysis of attenuation anisotropy in multi-azimuth VSP
                            参 考     文   献                          data from the Clair field[J]. Geophysical Prospecting,
                                                                   2007, 55(4): 627–642.
              [1] 吴永平, 杨池银, 王喜双. 渤海湾盆地北部奥陶系潜山油气藏                [12] Clark R, Benson P, Carter A, et al. Anisotropic P-wave
                 成藏组合及勘探技术 [J]. 石油勘探与开发, 2000, 27(4): 1–4,         attenuation measured from a multi-azimuth surface seis-
                 11.                                               mic reflection survey[J]. Geophysical Prospecting, 2009,
                 Wu Yongping, Yang Chiyin, Wang Xishuang. Ordovician  57(4): 835–845.
                 buried hill reservoir plays and exploration technique of  [13] Müller T M, Gurevich B, Lebedev M. Seismic wave atten-
                 northern Bohai Bay basin[J]. Petroleum Exploration and  uation and dispersion resulting from wave-induced flow
                 Development, 2000, 27(4): 1–4, 11.                in porous rocks—A review[J]. Geophysics, 2010, 75(4):
              [2] 邱隆伟, 畅通, 张营革, 等. 义东地区碳酸盐岩储层裂缝特征、                 75A147–75A164.
                 期次及成因机制 [J]. 东北石油大学学报, 2018, 42(4): 16–24,     [14] Liu E, Queen J H, Li X Y, et al. Observation and anal-
                 6.                                                ysis of frequency-dependent anisotropy from a multicom-
                 Qiu Longwei, Chang Tong, Zhang Yingge, et al. Fea-  ponent VSP at Bluebell-Altamont field, Utah[J]. Journal
                 tures and stages, formation mechanism of fracture of car-  of Applied Geophysics, 2003, 54(3/4): 319–333.
                 bonate reservoir in Yidong area[J]. Journal of Northeast  [15] Liu E, Chapman M, Varela I, et al. Velocity and attenua-
                 Petroleum University, 2018, 42(4): 16–24, 6.      tion anisotropy: implication of seismic fracture character-
              [3] 肖阳, 刘国平, 韩春元, 等. 冀中坳陷深层碳酸盐岩储层天然裂                 izations[J]. The Leading Edge, 2007, 26(9): 1170–1174.
                 缝发育特征与主控因素 [J]. 天然气工业, 2018, 38(7): 33–42.     [16] Rubino J G, Müller T M, Guarracino L, et al.  Seis-
                 Xiao Yang, Liu Guoping, Han Chunyuan, et al. Develop-  moacoustic signatures of fractures connectivity[J]. Jour-
                 ment characteristics and main controlling factors of nat-  nal of Geophysical Research: Solid Earth, 2014, 119(2):
                 ural fractures in deep carbonate reservoirs in the Jizhong  2252–2271.
                 Depression[J]. Natural Gas Industry, 2018, 38(7): 33–42.  [17] Hudson J A, Liu E, Crampin S. The mechanical proper-
              [4] Bush I. An integrated approach to fracture characteriza-  ties of materials with interconnected cracks and pores[J].
                 tion[J]. Oil Review Middle East, 2010, 2: 88–91.  Geophysical Journal International, 1996, 124(1): 105–112.
              [5] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页                [18] Chapman M, Zatsepin S V, Crampin S. Derivation of a
                 岩气勘探和开发的影响 [J]. 天然气地球科学, 2011, 22(2):             microstructural poroelastic model[J]. Geophysical Journal
                 525–532.                                          International, 2002, 151(1): 427–451.
                 Long Pengyu, Zhang Jinchuan, Tang Xuan, et al. Feature  [19] Chapman M. Frequency dependent anisotropy due to
                 of muddy shale fissure and its effect for shale gas explo-  mesoscale fractures in the presence of equant porosity[J].
                 ration and development[J]. Natural Gas Geoscience, 2011,  Geophysical Prospecting, 2003, 51(4): 369–379.
                 22(2): 525–532.                                [20] Chapman M, Liu E, Li X Y. The influence of fluid-
              [6] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含                  sensitive dispersion and attenuation on AVO analysis[J].
                 气性的影响 [J]. 地学前缘, 2012, 19(1): 212–220.            Geophysical Journal International, 2006, 167(1): 89–105.
                 Ding Wenlong, Li Chao, Li Chunyan, et al. Dominant fac-  [21] Jakobsen M, Johansen T A, McCann C. The acoustic sig-
                 tor of fracture development in shale and its relationship to  nature of fluid flow in complex porous media[J]. Journal
                 gas accumulation[J]. Earth Science Frontiers, 2012, 19(1):  of Applied Geophysics, 2003, 54(2): 219–246.
                 212–220.                                       [22] Jakobsen M, Hudson J A. Visco-elastic waves in rock-
              [7] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类                  like composites[J]. Studia Geophysica et Geodaetica, 2003,
                 型及其对储层物性影响 [J]. 石油与天然气地质, 2019, 40(1):            47(3): 793–826.
                 41–49.                                         [23] Jakobsen M. The interacting inclusion model of wave-
                 Wang Hu, He Zhiliang, Zhang Yonggui, et al. Microfrac-  induced fluid flow[J]. Geophysical Journal International,
                 ture types of marine shale reservoir of Sichuan Basin and  2004, 158(2): 1168–1176.
   17   18   19   20   21   22   23   24   25   26   27