Page 109 - 《应用声学》2020年第2期
P. 109
第 39 卷 第 2 期 詹飞等: 水下回波处理中分数阶傅里叶变换的带通采样实现方法 267
利用 FrFT 方法处理带通采样回波数据时,可获得 [8] 陈艳丽, 郭良浩, 宫在晓. 简明分数阶傅里叶变换及其对线
正确的目标参数估计。对 FrFT 方法计算复杂度的 性调频信号的检测和参数估计 [J]. 声学学报, 2015, 40(6):
761–771.
理论分析结果表明,处理相同脉宽回波数据时,若奈
Chen Yanli, Guo Lianghao, Gong Zaixiao. The concise
奎斯特采样下处理窗宽为带通采样下处理窗宽的 4 fractional Fourier transform and its application in detec-
倍,则带通采样下算法计算复杂度可降低至奈奎斯 tion and parameter estimation of the linear frequency-
modulated signal[J]. Acta Acustica, 2015, 40(6): 761–771.
特采样下算法计算复杂度的22%。计算机仿真数据
[9] Guan J, Chen X L, Huang Y, et al. Adaptive fractional
和 UUV 平台湖试数据的处理结果验证了 FrFT 的 fourier transform-based detection algorithm for moving
带通采样实现方法的正确性,数据处理时间能够满 target in heavy sea clutter[J]. IET Radar, Sonar & Navi-
gation, 2012, 6(5): 389–401.
足 UUV 平台处理的实时性要求,从而实现了 FrFT
[10] 陈鹏, 侯朝焕, 马晓川, 等. 基于匹配滤波和离散分数阶傅里
方法的工程化实时应用。 叶变换的水下动目标 LFM 回波联合检测 [J]. 电子与信息学
下一步将深入研究 FrFT 的带通采样实现方法 报, 2007, 29(10): 2305–2308.
Chen Peng, Hou Chaohuan, Ma Xiaochuan, et al. The
的性能,以及如何进一步降低 FrFT 方法的计算复
joint detection to underwater moving target’s LFM echo
杂度,以满足主动声呐系统中更广泛的应用需求。 based on matched filter and discrete fractional Fourier
transform[J]. Journal of Electronics & Information Tech-
nology, 2007, 29(10): 2305–2308.
参 考 文 献 [11] 马艳, 罗美玲. 基于分数阶傅里叶变换水下目标距离及速度的
联合估计 [J]. 兵工学报, 2011, 32(8): 1030–1035.
[1] Lee D H, Shin J W, Do D W, et al. Robust LFM target Ma Yan, Luo Meiling. FrFT-based joint range and radial
velocity estimation of underwater target[J]. Acta Arma-
detection in wideband sonar systems[J]. IEEE Transac-
mentarii, 2011, 32(8): 1030–1035.
tions on Aerospace and Electronic Systems, 2017, 53(5):
2399–2412. [12] Yu G, Yang T C, Piao S C. Estimating the delay-Doppler
[2] Yang T C, Schindall J, Huang C F, et al. Clutter re- of target echo in a high clutter underwater environment
duction using doppler sonar in a harbor environment[J]. using wideband linear chirp signals: evaluation of perfor-
Journal of the Acoustical Society of America, 2012, 132(5): mance with experimental data[J]. Journal of the Acousti-
3053–3067. cal Society of America, 2017, 142(4): 2047–2057.
[3] 朱埜. 主动声呐检测信息原理 [M]. 北京: 科学出版社, 2015: [13] Yu G, Piao S C, Han X. Fractional Fourier transform-
146–154. based detection and delay time estimation of moving tar-
[4] Almeida L B. The fractional Fourier transform and time- get in strong reverberation environment[J]. IET Radar,
frequency representations[J]. IEEE Transactions on Signal Sonar & Navigation, 2017, 11(9): 1367–1372.
Processing, 1994, 42(11): 3084–3091. [14] 鄢社锋, 马晓川. 宽带波束形成器的设计与实现 [J]. 声学学
[5] 刘大利, 刘云涛, 蔡惠智. 水下连续波有源探测的回波检测算 报, 2008, 33(4): 316–326.
法 [J]. 声学学报, 2014, 39(2): 163–169. Yan Shefeng, Ma Xiaochuan. Designs and implementa-
Liu Dali, Liu Yuntao, Cai Huizhi. An echo detection algo- tions of broadband beamformers[J]. Acta Acustica, 2008,
rithm for underwater continuous wave active detection[J]. 33(4): 316–326.
Acta Acustica, 2014, 39(2): 163–169. [15] Vaughan R G, Scott N L, White D R. The theory of band-
[6] 陈艳丽, 郭良浩, 宫在晓. 低信噪比线性调频信号目标的方位 pass sampling[J]. IEEE Transactions on Signal Processing,
估计 [J]. 声学学报, 2017, 42(4): 411–420. 1991, 39(9): 1973–1984.
Chen Yanli, Guo Lianghao, Gong Zaixiao. Bearing esti- [16] 赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归
mation of low SNR linear frequency-modulated signal[J]. 一化 [J]. 北京理工大学学报, 2005, 25(4): 360–364.
Acta Acustica, 2017, 42(4): 411–420. Zhao Xinghao, Deng Bing, Tao Ran. Dimensional normal-
[7] 陈文剑, 孙辉, 朱建军, 等. 基于分数阶傅里叶变换混响抑制 ization in the digital computation of the fractional Fourier
的目标回波检测方法 [J]. 声学学报, 2009, 34(5): 408–415. transform[J]. Transactions of Beijing Institute of Technol-
Chen Wenjian, Sun Hui, Zhu Jianjun, et al. A method ogy, 2005, 25(4): 360–364.
for detecting target echo in reverberation based on frac- [17] Ozaktas H M, Arikan O, Kutay M A, et al. Digital compu-
tional Fourier transform[J]. Acta Acustica, 2009, 34(5): tation of the fractional Fourier transform[J]. IEEE Trans-
408–415. actions on Signal Processing, 1996, 44(9): 2141–2150.