Page 125 - 《应用声学》2020年第2期
P. 125
第 39 卷 第 2 期 贾基东等: 一种基于随机序列的正交离散频率编码信号 283
IEEE Transactions on Information Theory, 2004, 50(9):
5 结论 2149–2154.
[10] Ding C, Yin J. Sets of optimal frequency-hopping se-
与混沌序列相比,线性同余随机序列具有更强 quences[J]. IEEE Transactions on Information Theory,
的随机性。本文基于线性同余随机序列设计离散 2008, 54(8): 3741–3745.
[11] Ge G, Miao Y, Yao Z. Optimal frequency hop-
频率编码信号,并与文献[16–17]提出的基于Lorenz
ping sequences: auto-and cross-correlation properties[J].
混沌序列和基于 Bernoulli 混沌序列设计离散频率 IEEE Transactions on Information Theory, 2009, 55(2):
编码信号的方法进行了比较。从理论上推导了离散 867–879.
频率编码信号的模糊函数,并分析得出离散频率编 [12] 徐善顶, 曹喜望, 许广魁. 一类周期为素数倍数的跳频序列
族 [J]. 电子学报, 2015, 43(10): 1930–1935.
码信号的时延测量精度取决于信号带宽,多普勒测
Xu Shanding, Cao Xiwang, Xu Guangkui. A class of
量精度取决于信号时长。对基于随机序列编码的离 frequency-hopping sequences set with a multiple of prime
散频率编码信号的正交性从理论上进行了定性分 number length[J]. Acta Electronica Sinica, 2015, 43(10):
析,得出不同信号彼此间的正交性主要取决于信号 1930–1935.
[13] 吕曜辉, 杜鹏宇, 张宏滔, 等. 基于混沌正交组合序列的 M 元
编码序列的码元重叠数量,基于随机序列编码的离
码分多址水声通信 [J]. 声学技术, 2018, 37(1): 32–37.
散频率编码信号能取得较好的正交性,并通过仿真 Lyu Yaohui, Du Pengyu, Zhang Hongtao, et al. M-ary
实验对这一结论进行了对比验证。 code division multiple access underwater acoustic com-
munication based on chaotic orthogonal combination se-
quence[J]. Technical Acoustics, 2018, 37(1): 32–37.
参 考 文 献 [14] 米良. 一类混沌跳频序列的性能分析 [J]. 电子与信息学报,
2005, 27(11): 1741–1744.
Mi Liang. The performance analysis of chaotic frequency-
[1] Bordonaro S, Willett P, Bar-Shalom Y, et al. Converted
hopping sequences[J]. Journal of Electronics & Informa-
measurement sigma point kalman filter for bi-static sonar
and radar tracking[J]. IEEE Transactions on Aerospace tion Technology, 2005, 27(11): 1741–1744.
[15] 黄琼丹, 李勇, 卢光跃. 脉间 Costas 跳频脉内多载波混沌相位
and Electronic Systems, 2019, 55(1): 147–159.
[2] Ferri G, Munafo A, LePage K D. An autonomous un- 编码雷达信号设计与分析 [J]. 电子与信息学报, 2015, 37(6):
derwater vehicle data-driven control strategy for target 1483–1489.
tracking[J]. IEEE Journal of Oceanic Engineering, 2018, Huang Qiongdan, Li Yong, Lu Guangyue. Design and
43(2): 323–343. analysis of inter-pulse costas frequency hopping and intra-
[3] Basit A, Khan W, Khan S, et al. Development of fre- pulse multi-carrier chaotic phase coded radar signal[J].
quency diverse array radar technology: a review[J]. IET Journal of Electronics & Information Technology, 2015,
Radar, Sonar & Navigation, 2018, 12(2): 165–175. 37(6): 1483–1489.
[4] Liu X, Zhou L, Li S. A new method to construct strictly [16] 杨进, 邱兆坤, 黎湘, 等. 一种基于混沌序列的随机离散频率
optimal frequency hopping sequences with new parame- 编码信号 [J]. 电子与信息学报, 2011, 33(11): 2702–2708.
ters[J]. IEEE Transactions on Information Theory, 2019, Yang Jin, Qiu Zhaokun, Li Xiang, et al. Random dis-
65(3): 1828–1844. crete frequency coding signal based on chaotic series[J].
[5] Ahmed S N A, Meher P K, Vinod A P. Fast acquisition Journal of Electronics & Information Technology, 2011,
and time synchronization of frequency hopping burst sig- 33(11): 2702–2708.
nals[C]. 2017 International Conference on Signals and Sys- [17] 张民, 李宗浩, 高明. 基于 Lorenz 混沌的 MIMO 雷达信号设
tems, Indonesia, 2017: 175–179. 计及性能分析 [J]. 系统工程与电子技术, 2018, 40(1): 58–64.
[6] Cai H, Yang Y, Zhou Z, et al. Strictly optimal Zhang Min, Li Zonghao, Gao Ming. Design and perfor-
frequency-hopping sequence sets with optimal family mance of MIMO radar signal based on Lorenz chaos[J].
sizes[J]. IEEE Transactions on Information Theory, 2016, Systems Engineering and Electronics, 2018, 40(1): 58–64.
62(2): 1087–1093. [18] 吴飞. 产生随机数的几种方法及其应用 [J]. 数值计算与计算
[7] Lempel A, Greenberger H. Families of sequences with op- 机应用, 2006, 27(1): 48–51.
timal Hamming-correlation properties[J]. IEEE Transac- Wu Fei. Several methods of creating stochastic numbers
tions on Information Theory, 1974, 20(1): 90–94. and applications[J]. Journal on Numerical Methods and
[8] Costas J P. A study of a class of detection waveforms hav- Computer, 2006, 27(1): 48–51.
ing nearly ideal range—Doppler ambiguity properties[J]. [19] Pecknold S P, Renaud W M, McGaughey D R, et al.
Proceedings of the IEEE, 1984, 72(8): 996–1009. Improved active sonar performance using costas wave-
[9] Peng D Y, Fan P Z. Lower bounds on the Hamming auto- forms[J]. IEEE Journal of Oceanic Engineering, 2009,
and cross correlations of frequency-hopping sequences[J]. 34(4): 559–574.