Page 125 - 《应用声学》2020年第2期
P. 125

第 39 卷 第 2 期             贾基东等: 一种基于随机序列的正交离散频率编码信号                                          283


                                                                   IEEE Transactions on Information Theory, 2004, 50(9):
             5 结论                                                  2149–2154.
                                                                [10] Ding C, Yin J. Sets of optimal frequency-hopping se-
                 与混沌序列相比,线性同余随机序列具有更强                              quences[J]. IEEE Transactions on Information Theory,
             的随机性。本文基于线性同余随机序列设计离散                                 2008, 54(8): 3741–3745.
                                                                [11] Ge G, Miao Y, Yao Z. Optimal frequency hop-
             频率编码信号,并与文献[16–17]提出的基于Lorenz
                                                                   ping sequences: auto-and cross-correlation properties[J].
             混沌序列和基于 Bernoulli 混沌序列设计离散频率                          IEEE Transactions on Information Theory, 2009, 55(2):
             编码信号的方法进行了比较。从理论上推导了离散                                867–879.
             频率编码信号的模糊函数,并分析得出离散频率编                             [12] 徐善顶, 曹喜望, 许广魁. 一类周期为素数倍数的跳频序列
                                                                   族 [J]. 电子学报, 2015, 43(10): 1930–1935.
             码信号的时延测量精度取决于信号带宽,多普勒测
                                                                   Xu Shanding, Cao Xiwang, Xu Guangkui.  A class of
             量精度取决于信号时长。对基于随机序列编码的离                                frequency-hopping sequences set with a multiple of prime
             散频率编码信号的正交性从理论上进行了定性分                                 number length[J]. Acta Electronica Sinica, 2015, 43(10):
             析,得出不同信号彼此间的正交性主要取决于信号                                1930–1935.
                                                                [13] 吕曜辉, 杜鹏宇, 张宏滔, 等. 基于混沌正交组合序列的 M 元
             编码序列的码元重叠数量,基于随机序列编码的离
                                                                   码分多址水声通信 [J]. 声学技术, 2018, 37(1): 32–37.
             散频率编码信号能取得较好的正交性,并通过仿真                                Lyu Yaohui, Du Pengyu, Zhang Hongtao, et al. M-ary
             实验对这一结论进行了对比验证。                                       code division multiple access underwater acoustic com-
                                                                   munication based on chaotic orthogonal combination se-
                                                                   quence[J]. Technical Acoustics, 2018, 37(1): 32–37.
                            参 考     文   献                       [14] 米良. 一类混沌跳频序列的性能分析 [J]. 电子与信息学报,
                                                                   2005, 27(11): 1741–1744.
                                                                   Mi Liang. The performance analysis of chaotic frequency-
              [1] Bordonaro S, Willett P, Bar-Shalom Y, et al. Converted
                                                                   hopping sequences[J]. Journal of Electronics & Informa-
                 measurement sigma point kalman filter for bi-static sonar
                 and radar tracking[J]. IEEE Transactions on Aerospace  tion Technology, 2005, 27(11): 1741–1744.
                                                                [15] 黄琼丹, 李勇, 卢光跃. 脉间 Costas 跳频脉内多载波混沌相位
                 and Electronic Systems, 2019, 55(1): 147–159.
              [2] Ferri G, Munafo A, LePage K D. An autonomous un-  编码雷达信号设计与分析 [J]. 电子与信息学报, 2015, 37(6):
                 derwater vehicle data-driven control strategy for target  1483–1489.
                 tracking[J]. IEEE Journal of Oceanic Engineering, 2018,  Huang Qiongdan, Li Yong, Lu Guangyue. Design and
                 43(2): 323–343.                                   analysis of inter-pulse costas frequency hopping and intra-
              [3] Basit A, Khan W, Khan S, et al. Development of fre-  pulse multi-carrier chaotic phase coded radar signal[J].
                 quency diverse array radar technology: a review[J]. IET  Journal of Electronics & Information Technology, 2015,
                 Radar, Sonar & Navigation, 2018, 12(2): 165–175.  37(6): 1483–1489.
              [4] Liu X, Zhou L, Li S. A new method to construct strictly  [16] 杨进, 邱兆坤, 黎湘, 等. 一种基于混沌序列的随机离散频率
                 optimal frequency hopping sequences with new parame-  编码信号 [J]. 电子与信息学报, 2011, 33(11): 2702–2708.
                 ters[J]. IEEE Transactions on Information Theory, 2019,  Yang Jin, Qiu Zhaokun, Li Xiang, et al. Random dis-
                 65(3): 1828–1844.                                 crete frequency coding signal based on chaotic series[J].
              [5] Ahmed S N A, Meher P K, Vinod A P. Fast acquisition  Journal of Electronics & Information Technology, 2011,
                 and time synchronization of frequency hopping burst sig-  33(11): 2702–2708.
                 nals[C]. 2017 International Conference on Signals and Sys-  [17] 张民, 李宗浩, 高明. 基于 Lorenz 混沌的 MIMO 雷达信号设
                 tems, Indonesia, 2017: 175–179.                   计及性能分析 [J]. 系统工程与电子技术, 2018, 40(1): 58–64.
              [6] Cai H, Yang Y, Zhou Z, et al.  Strictly optimal  Zhang Min, Li Zonghao, Gao Ming. Design and perfor-
                 frequency-hopping sequence sets with optimal family  mance of MIMO radar signal based on Lorenz chaos[J].
                 sizes[J]. IEEE Transactions on Information Theory, 2016,  Systems Engineering and Electronics, 2018, 40(1): 58–64.
                 62(2): 1087–1093.                              [18] 吴飞. 产生随机数的几种方法及其应用 [J]. 数值计算与计算
              [7] Lempel A, Greenberger H. Families of sequences with op-  机应用, 2006, 27(1): 48–51.
                 timal Hamming-correlation properties[J]. IEEE Transac-  Wu Fei. Several methods of creating stochastic numbers
                 tions on Information Theory, 1974, 20(1): 90–94.  and applications[J]. Journal on Numerical Methods and
              [8] Costas J P. A study of a class of detection waveforms hav-  Computer, 2006, 27(1): 48–51.
                 ing nearly ideal range—Doppler ambiguity properties[J].  [19] Pecknold S P, Renaud W M, McGaughey D R, et al.
                 Proceedings of the IEEE, 1984, 72(8): 996–1009.   Improved active sonar performance using costas wave-
              [9] Peng D Y, Fan P Z. Lower bounds on the Hamming auto-  forms[J]. IEEE Journal of Oceanic Engineering, 2009,
                 and cross correlations of frequency-hopping sequences[J].  34(4): 559–574.
   120   121   122   123   124   125   126   127   128   129   130