Page 157 - 《应用声学》2020年第2期
P. 157

第 39 卷 第 2 期            张礼华等: 三维微机电系统声发射传感器设计及性能分析                                          315


             少挤压膜阻尼,得到传感单元谐振点处的灵敏度较                                scale sandwich composite fuselage panels using acoustic
                        9
             好(1.43 × 10 /(V·m −1 ));                              emission[J]. Journal of Composite Materials, 2013, 47(13):
                                                                   1643–1664.
                 (3) 在有阻尼状态下,z 方向响应传感单元的谐
                                                                 [4] Khuri-Yakub B T, Degertekin F L, Jin X, et al. Silicon mi-
             振频率为251.11 kHz,在所需响应频段范围内;在无                          cromachined ultrasonic transducers[C]//IEEE Ultrasonics
             阻尼状态下,z 方向响应传感单元的圆形极板边缘                               Symposium, 1998, 2: 985–991.
                                                                 [5] Jin X, Ladabaum I, Khuri-Yakub B T. The microfabri-
             变形量较大且变形量比较均匀。
                                                                   cation of capacitive ultrasonic transducers[J]. Journal of
                 通过对x、y 方向响应传感单元的设计和有限元                            Microelectromechanical Systems, 1998, 7(3): 295–302.
             分析,得到以下结论:                                          [6] Saboonchi H, Ozevin D, Kabir M. MEMS sensor fusion:
                                                                   acoustic emission and strain[J]. Sensors and Actuators A:
                 (1) U 型弹簧降低了 x、y 响应传感单元在 z
                                                                   Physical, 2016, 247: 566–578.
             方向上的刚度,传感单元的极板厚度为 60 µm                             [7] Kabir M, Saboonchi H, Ozevin D. Accurate source local-
             时,在 z 方向上获得较小的谐振频率 (146.73 kHz、                       ization using highly narrowband and densely populated
             197.83 kHz),相对于在 x、y 方向可以获得较高的谐                       mems acoustic emission sensors[C]//Structural Health
                                                                   Monitoring, 2015.
             振频率 (240.5 kHz、234.59 kHz),有效地将所需 x、
                                                                 [8] Bekas D G, Sharif-Khodaei Z, Baltzis D, et al. Qual-
             y 方向的机械响应与不需要的 z 方向机械响应隔离                             ity assessment and damage detection in nanomodified
             开来;                                                   adhesively-bonded composite joints using inkjet-printed
                                                                   interdigital sensors[J]. Composite Structures, 2019, 211:
                 (2) 所研究的 x、y 方向响应传感单元的芯片面
                                                                   557–563.
             积很小 (4.1 mm × 5.3 mm ×1 mm),灵敏度高、抗                  [9] Pollock A A, Stephens R W B. Waveform and frequency
             干扰能力强、稳定性好、制造简单。                                      spectra of acoustic emissions[J]. Journal of the Acoustical
                                                                   Society of America, 1971, 49(1A): 110.
                                                                [10] Ozevin D, Greve D W, Oppenheim I J, et al. Capacitive
                            参 考     文   献                          mems transducers for acoustic emissiontesting of materi-
                                                                   als and structures[R]. ATLSS Reports, 2005.
                                                                [11] 杨帆. MEMS 圆板扭转谐振器件的挤压膜阻尼机理与模
              [1] Schumacher T, Higgins C, Lovejoy S. Acoustic emission
                                                                   型 [D]. 江苏: 东南大学, 2017.
                 monitoring of conventionally reinforced concrete high-
                                                                [12] Saboonchi H, Ozevin D. MEMS acoustic emission trans-
                 way bridges under service conditions[M]//Nondestructive
                                                                   ducers designed with high aspect ratio geometry[J]. Smart
                 Testing of Materials and Structures.  Springer Nether-
                                                                   Materials and Structures, 2013, 22(9): 095006.
                 lands, 2013: 847–853.
              [2] Ozevin D, Harding J. Novel leak localization in pressurized  [13] 程耀东, 李培玉. 机械振动学 [M]. 杭州: 浙江大学出版社,
                 pipeline networks using acoustic emission and geometric  1988: 11.
                 connectivity[J]. International Journal of Pressure Vessels  [14] Marin-Franch P, Martin T, Tunnicliffe D L, et al.
                 and Piping, 2012, 92: 63–69.                      PTCa/PEKK piezo-composites for acoustic emission de-
              [3] Leone F A, Ozevin D, Awerbuch J, et al.  Detecting  tection[J]. Sensors and Actuators A: Physical, 2002, 99(3):
                 and locating damage initiation and progression in full-  236–243.
   152   153   154   155   156   157   158   159   160   161   162