Page 23 - 《应用声学》2020年第3期
P. 23

第 39 卷 第 3 期              余忠儒等: 基于近场辐射声压信号的索力识别方法                                           343


                 Guo Mingyuan, Chen Zhihua, Liu Hongbo, et al. Re-  2014, 333(13): 2728–2742.
                 search progress of cable force test technology and flexural  [8] 夏茂龙, 黎胜. 基于声压测量的结构模态参数辨识 [J]. 振动与
                 rigidity[J]. Spatial Structure, 2016, 22(3): 34–43.  冲击, 2017, 36(22): 232–238.
              [2] 吉伯海, 程苗, 傅中秋, 等. 基于振动频率法的斜拉桥索力                   Xia Maolong, Li Sheng. Identification of structural modal
                 测试影响因素 [J]. 中南大学学报 (自然科学版), 2015, 46(7):          parameters based on sound pressure measurement[J].
                 2620–2625.                                        Journal of Vibration and Shock, 2017, 36(22): 232–238.
                 Ji Bohai, Cheng Miao, Fu Zhongqiu, et al. Influential  [9] Yang J N, Lei Y, Pan S, et al. System identification of
                 factors in cable force measurement of cable-stayed bridges  linear structures based on Hilbert–Huang spectral anal-
                 based on vibration frequency method[J]. Journal of Cen-  ysis. Part 1: normal modes[J]. Earthquake Engineering
                 tral South University (Science and Technology), 2015,  and Structural Dynamics, 2003, 32(9): 1443–1467.
                 46(7): 2620–2625.                              [10] Xu Y F, Zhu W D. Operational modal analysis of a rect-
              [3] 马天颖. 复杂边界条件下拉索索力频率法测量方法研究 [D].                   angular plate using non-contact excitation and measure-
                 广州: 华南理工大学, 2018.                                 ment[J]. Journal of Sound and Vibration, 2013, 332(20):
              [4] 赵云鹏. 基于频率法的平行钢绞线斜拉索索力测试研究 [D].                   4927–4939.
                 郑州: 郑州大学, 2013.                                [11] Huang N E, Shen Z, Long S R, et al. The empirical mode
              [5] Prezelj J, Černe D, Ottowitz L, et al.  Investigation  decomposition and the Hilbert spectrum for nonlinear and
                 on identifying structural modes by sound pressure sig-  non-stationary time series analysis[J]. Proceedings of the
                 nals[J]. E & I Elektrotechnik und Informationstechnik,  Royal Society of London. Series A: Mathematical, Physi-
                 2009, 126(5): 194–199.                            cal and Engineering Sciences, 1998, 454(1971): 903–995.
              [6] Prezelj J, Lipar P, Belšak A, et al. On acoustic very near  [12] Yang J N, Lei Y, Pan S, et al. System identification of
                 field measurements[J]. Mechanical Systems & Signal Pro-  linear structures based on Hilbert–Huang spectral analy-
                 cessing, 2013, 40(1): 194–207.                    sis. Part 2: complex modes[J]. Earthquake Engineering
              [7] Zhu W D, Liu J M, Xu Y F, et al.  A modal test   and Structural Dynamics, 2003, 32(10): 1533–1554.
                 method using sound pressure transducers based on vibro-  [13] 公路桥梁荷载试验规程: JTG/T J21–01–2015[S].
                 acoustic reciprocity[J]. Journal of Sound & Vibration,
   18   19   20   21   22   23   24   25   26   27   28