Page 39 - 《应用声学》2020年第3期
P. 39
第 39 卷 第 3 期 沈晓炜: 基于粒子群算法的稀疏阵列超声相控阵全聚焦成像 359
与优化,以确保其具有可靠的收敛性能和更好的成 [9] 刘新星, 张贞凯, 费晓. 模拟退火算法的共享孔径多波束形
像性能。使用稀疏阵列进行后处理成像时,未参与 成 [J]. 电光与控制, 2018, 25(11): 57–65.
Liu Xinxing, Zhang Zhenkai, Fei Xiao. Multi-aperture
计算的回波数据被直接忽略而未得到有效利用,可
beamforming with shared aperture based on simulated an-
能会影响细小缺陷和闭合裂纹的检测效果。此外本 nealing algorithm[J]. Electronics Optics & Control, 2018,
文所述方法有效降低了成像数据的使用量,从理论 25(11): 57–65.
上提高了数据传输性能和成像效率,但现有的成像 [10] Hu H, Du J, Xu N, et al. Ultrasonic sparse-TFM imag-
ing for a two-layer medium using genetic algorithm opti-
算法无法解决稀疏阵列成像的近场成像伪影问题,
mization and effective aperture correction[J]. NDT & E
且在成像过程中存在大量的冗余计算,这需要针对 International, 2017, 90: 24–32.
稀疏成像算法进行改进以提高成像效率。 [11] 滕玉鹏, 史朝, 全宇, 等. 粒子群优化算法对波束形成的效果
分析 [J]. 成都信息工程大学学报, 2016, 31(1): 22–28.
Teng Yupeng, Shi Zhao, Quan Yu, et al. The effect of
参 考 文 献 particle swarm optimization for beam-forming[J]. Journal
of Chengdu University of Information Technology, 2016,
[1] 张冬梅, 于光, 周正干, 等. 复合材料构件 R 区的超声相控阵 31(1): 22–28.
检测实验 [J]. 北京航空航天大学学报, 2013, 39(5): 688–692. [12] 阳凯, 赵志钦, 聂在平. 基于模糊离散粒子群算法的非均匀阵
Zhang Dongmei, Yu Guang, Zhou Zhenggan, et al. Ultra- 列优化 [J]. 电子科技大学学报, 2012, 41(1): 43–47.
sonic phased array inspection for the corner of composite Yang Kai, Zhao Zhiqin, Nie Zaiping. Optimization of un-
components[J]. Journal of Beijing University of Aeronau- equally spaced antenna arrays using fuzzy discrete parti-
tics and Astronautics, 2013, 39(5): 688–692. cle swarm algorithm[J]. Journal of University of Electronic
[2] Debroy T, Wei H, Zuback J, et al. Additive manufactur- Science and Technology of China, 2012, 41(1): 43–47.
ing of metallic components–process, structure and proper-
[13] Eberhart R, Kennedy J. A new optimizer using particle
ties[J]. Progress in Materials Science, 2017, 92: 112–224.
swarm theory[C]// Mhs95 Sixth International Symposium
[3] Holmes C, Drinkwater B W, Wilcox P D. Post-processing
on Micro Machine & Human Science, 2002.
of the full matrix of ultrasonic transmit–receive array data
[14] Vesterstrom J, Thomsen R. A comparative study of
for non-destructive evaluation[J]. NDT & E International,
differential evolution, particle swarm optimization, and
2005, 38(8): 701–711.
evolutionary algorithms on numerical benchmark prob-
[4] 周正干, 孙广开. 先进超声检测技术的研究应用进展 [J]. 机械
lems[C]//Congress on Evolutionary Computation, Port-
工程学报, 2017, 53(22): 1–10.
land, 2004: 1980–1987.
Zhou Zhenggan, Sun Guangkai. New progress of the study
[15] Bray M G, Werner D H, Boeringer D W, et al. Opti-
and application of advanced ultrasonic testing technol-
mization of thinned aperiodic linear phased arrays using
ogy[J]. Journal of Mechanical Engineering, 2017, 53(22):
genetic algorithms to reduce grating lobes during scan-
1–10.
ning[J]. IEEE Transactions on Antennas and Propagation,
[5] 初希, 欧阳权. 相控阵超声波检测技术在汽轮机叶根检测中的
2002, 50(12): 1732–1742.
应用 [J]. 吉林电力, 2018, 46(6): 21–23.
[16] Yang P, Chen B, Shi K R. A novel method to design
Chu Xi, Ouyang Quan. Application of phased array ul-
trasonic testing technology for turbine blade root[J]. Jilin sparse linear arrays for ultrasonic phased array[J]. Ultra-
Electric Power, 2018, 46(6): 21–23. sonics, 2006, 44: e717–e721.
[6] Jr Schmerr L W. Fundamentals of ultrasonic phased ar- [17] 郑晖, 林春深, 杨天雪. 相控阵超声探伤中一维稀疏阵列的
rays[M]. Springer International Publishing, 2015. 优化设计研究 [J]. 福州大学学报 (自然科学版), 2014, 42(3):
[7] Drinkwater B W, Wilcox P D. Ultrasonic arrays for non- 430–438.
destructive evaluation: a review[J]. NDT & E Interna- Zheng Hui, Lin Chunshen, Yang Tianxue. Optimization
tional, 2006, 39(7): 525–541. design of 1D sparse array for ultrasonic phased array[J].
[8] 焦敬品, 杨素方, 何存富, 等. 相位加权的矢量全聚焦超声阵 Journal of Fuzhou University(Natural Science Edition),
列成像方法研究 [J]. 声学学报, 2017, 42(4): 485–494. 2014, 42(3): 430–438.
Jiao Jingpin,Yang Sufang, He Cunfu, et al. Investigation [18] Lockwood G R, Li P C, O’Donnell M, et al. Optimizing
of an ultrasonic array imaging method of phase weight- the radiation pattern of sparse periodic linear arrays[J].
ing vector total focusing[J]. Acta Acustica, 2017, 42(4): IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
485–494. quency Control, 1996, 43(1): 7–14.