Page 26 - 《应用声学》2020年第6期
P. 26
820 2020 年 11 月
Acoustical Society of America, 1993, 93(4): 1807–1814.
[10] 黄勇, 李宇, 朱沛胜, 等. 基于水平合成阵列的简正波波数估
参 考 文 献
计 [J]. 声学学报, 2009, 34(3): 229–233.
Huang Yong, Li Yu, Zhu Peisheng, et al. Normal mode
[1] Tolstoy A. Matched field processing for underwater acous- wave-number estimation using horizontal synthetic aper-
tics[M]. Singapore: World Scientific, 1993.
ture array[J]. Acta Acustica, 2010, 29(2): 190–198.
[2] Collison N E, Dosso S E. Regularized matched-mode
[11] Yang T C. Source depth estimation based on synthetic
processing for source localization[J]. The Journal of tihe
aperture beamfoming for a moving source[J]. The Jour-
Acoustical Society of America, 2000, 107(6): 3089–3100.
nal of the Acoustical Society of America, 2015, 138(3):
[3] Nicolas B, Mars J I, Lacoume J L. Source depth estimation
1678–1686.
using a horizontal array by matched-mode processing in
[12] Candy J V, Sullivan E J. Cancelling tow ship noise using
the frequency-wavenumber domain[J]. EURASIP Journal
an adaptive model-based approach[C]//Proceedings of the
on Advances in Signal Processing, 2006, 2006(1): 065901.
IEEE/OES Eighth Working Conference on Current Mea-
[4] Sazontov A G, Malekhanov A I. Matched field signal
surement Technology, 2005. IEEE, 2005: 14–18.
processing in underwater sound channels[J]. Acoustical
[13] Sullivan E J, Candy J V. Enhanced processing for a towed
Physics, 2015, 61(2): 213–230.
array using an optimal noise canceling approach[C]. Pro-
[5] Bogart C W, Yang T C. Source localization with horizon-
ceedings of OCEANS 2005 MTS/IEEE, 2005.
tal arrays in shallow water: spatial sampling and effec-
[14] Cederholm A, Jönsson M. Self-noise cancellation meth-
tive aperture[J]. The Journal of the Acoustical Society of
ods applied to acoustic underwater sensors[R]. Defence &
America, 1994, 96(3): 1677–1686.
Security, Systems and Technology, Swedish Defence Re-
[6] Premus V E, Helfrick M N. Use of mode subspace projec-
search Agency (FOI), 2008.
tions for depth discrimination with a horizontal line array:
[15] Chi C, Pallayil V, Chitre M. Design of an adaptive noise
theory and experimental results[J]. The Journal of the
Acoustical Society of America, 2013, 133(6): 4019–4031. canceller for improving performance of an autonomous un-
[7] 李鹏, 章新华, 付留芳, 等. 一种基于模态域波束形成的水平 derwater vehicle-towed linear array[J]. Ocean Engineer-
ing, 2020, 202: 106886.
阵被动目标深度估计 [J]. 物理学报, 2017, 66(8): 084301.
Li Peng, Zhang Xinhua, Fu Liufang, et al. A modal [16] Schmidt H, Kuperman W A. Spectral and modal represen-
domain beamforming approach for depth estimation by tations of the Doppler-shifted field in ocean waveguides[J].
a horizontal array[J]. Acta Physica Sinica, 2017, 66(8): The Journal of the Acoustical Society of America, 1994,
084301. 96(1): 386–395.
[8] 郭良浩, 刘志韬, 闫超. 利用水平阵模态域波束形成判别声源 [17] Farhang-Boroujeny B. Adaptive filters: theory and appli-
深度 [J]. 应用声学, 2019, 39(4): 490–500. cations[M]. New York: John Wiley & Sons, 2013.
Guo Lianghao, Liu Zhitao, Yan Chao. Source depth dis- [18] Lindsey W C, Chie C M. A survey of digital phase-locked
crimination based on beamforming in modal domain by loops[J]. Proceedings of the IEEE, 1981, 69(4): 410–431.
a horizontal array[J]. Journal of Applied Acoustics, 2019, [19] Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent
39(4): 490–500. digital communications for underwater acoustic chan-
[9] Chouhan H M, Anand G V. Normal mode wave-number nels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1):
estimation using a towed array[J]. The Journal of the 100–111.