Page 35 - 《应用声学》2020年第6期
P. 35
第 39 卷 第 6 期 张青青等: 南中国海海域存在孤立子内波条件下的声场统计特性 829
0.6
uide[J]. The Journal of the Acoustical Society of America,
దߤቡߕЯฉፃܦ͜୧य़
0.5 ߤቡߕЯฉፃܦ͜୧य़ 1997, 101(2): 789–808.
[2] Zhou J, Zhang X, Rogers P H. Resonant interaction of
0.4
sound wave with internal solitons in the coastal zone[J].
ഐဋ 0.3 The Journal of the Acoustical Society of America, 1991,
90(4): 2042–2054.
0.2
[3] Yan J, Zhang R H, Zhou S H, et al. Characteristics of the
0.1 internal waves and their effects on the sound transmis-
sion in the Midst of the Yellow Sea[J]. Chinese Journal of
0
64 66 68 70 72 74 Acoustics, 1999, 18(1): 47–54.
TL/dB
[4] Yoo K, Yang T C. Broadband source localization in shal-
(a) ʾԧʽஆᄊৱцଌஆງए˞22 m
low water in the presence of internal waves[J]. The Jour-
0.6 nal of the Acoustical Society of America, 1999, 106(6):
దߤቡߕЯฉፃܦ͜୧य़
0.5 ߤቡߕЯฉፃܦ͜୧य़ 3255–3269.
[5] Lynch J F. Acoustic travel-time perturbations due to
0.4 shallow-water internal waves and internal tides in the
ഐဋ 0.3 Barents Sea Polar Front: Theory and experiment[J]. The
Journal of the Acoustical Society of America, 1996, 99(2):
0.2 803–821.
[6] Apel J R, Badiey M, Chiu C S, et al. An overview of
0.1
the 1995 SWARM shallow-water internal wave acoustic
0 scattering experiment[J]. IEEE Journal of Oceanic Engi-
64 66 68 70 72 74
neering, 1997, 22(3): 465–500.
TL/dB
(b) ʾԧʾஆᄊৱцଌஆງए˞76 m [7] Duda T F, Preisig J C. A modeling study of acoustic prop-
agation through moving shallow-water solitary wave pack-
图 16 实验期间不同接收深度的声传播损失的概率分布 ets[J]. IEEE Journal of Oceanic Engineering, 1999, 24(1):
Fig. 16 The probability distribution of the TLs at 16–32.
different receiving depths during the experiment [8] Colosi J A, Morozov A K. Statistics of normal mode am-
plitudes in an ocean with random sound-speed perturba-
tions: cross-mode coherence and mean intensity[J]. The
4 结论
Journal of the Acoustical Society of America, 2009, 126(3):
1026–1035.
利用南中国海浅海海域一次低频声传播起伏 [9] Badiey M, Wan L, Luo J. Shallow water modal evolution
实验数据估计了孤立子内波波前速度,并且结合二 due to nonlinear internal waves[J]. Journal of Marine Sci-
维平流模型重构出接近实验水文的动态声速场,使 ence & Application, 2017, 16(3): 362–369.
[1] Lynch J F, Lin Y T, Duda T F, et al. Acoustic duct-
用 RAM-PE 模型结合 Monte-Carlo 方法分析了有 ing, reflection, refraction, and dispersion by curved non-
无孤立子内波经过声传播路径时的声场统计特性。 linear internal waves in shallow water[J]. IEEE Journal of
模型计算和实验结果表明:对于同一个收发声系统, Oceanic Engineering, 2010, 35(1): 12–27.
[11] Bajars J, Frank J, Maas L R M. On the appearance of in-
声传播路径上有孤立子内波比无孤立子内波情况
ternal wave attractors due to an initial or parametrically
声传播损失起伏更加剧烈、声场概率分布更加分散; excited disturbance[J]. Journal of Fluid Mechanics, 2013,
对于同一个发射声系统,接收声系统分别位于跃层 714: 283–311.
[12] Badiey M, Katsnelson B G, Lin Y T, et al. Acoustic mul-
上下方,“下发下收”比“下发上收” 情况传播损失的
tipath arrivals in the horizontal plane due to approaching
概率分布区间更加分散。 nonlinear internal waves[J]. The Journal of the Acoustical
Society of America, 2011, 129(4): EL141–EL147.
致谢 感谢参与 2015 年秋季南中国海调查实验的
[13] 宋俊, 李风华, 胡永明. 孤子内波对声场水平纵向相干特性的
全体 “实验 1” 工作人员,是他们的辛勤劳动为本文 影响 [J]. 声学技术, 2007, 26(2): 199–205.
提供了高质量的实验数据。 Song Jun, Li Fenghua, Hu Yongming. Effects of soli-
tary internal wave on horizontal longitudinal coherence of
参 考 文 献 shallow-water acoustic fields[J]. Technical Acoustics, 2007,
26(2): 199–205.
[1] Tielbürger D, Finette S, Wolf S. Acoustic propagation [14] 季桂花, 李整林, 戴琼兴. 浅海中内波对匹配场时间相关的影
through an internal wave field in a shallow water waveg- 响 [J]. 声学学报, 2008, 33(5): 419–424.