Page 63 - 《应用声学》2021年第4期
P. 63

第 40 卷 第 4 期              蒋瑜等: 表征超声衰减谱粒度的改进和声搜索算法                                           547


              [8] McClements D J. Comparison of multiple scattering theo-  Artificial Intelligence, 2014, 27(4): 305–312.
                 ries with experimental measurements in emulsions[J]. The  [16] Alireza R, Hamid-Reza E, Mohammad-Hassan K. Opti-
                 Journal of the Acoustical Society of America, 1992, 91(2):  mization of radial unbalanced distribution networks in the
                 849–853.                                          presence of distribution generation units by network re-
              [9] Epstein P S, Carhart R R. The absorption of sound in  configuration using harmony search algorithm[J]. Neural
                 suspensions and emulsions. I. Water fog in air[J]. The  Computing and Applications, 2019, 31(11): 7095–7109.
                 Journal of the Acoustical Society of America, 1953, 25(3):  [17] Hussein N J, Hu F, He F. Multisensor of thermal and
                 553–565.                                          visual images to detect concealed weapon using harmony
             [10] Allegra J R, Hawley S A. Attenuation of sound in suspen-  search image fusion approach[J]. Pattern Recognition Let-
                 sions and emulsions: theory and experiments[J]. The Jour-
                                                                   ters, 2017, 94: 219–227.
                 nal of the Acoustical Society of America, 1972, 51(5B):
                                                                [18] Shams M, El-Banbi A, Sayyouh H. Harmony search op-
                 1545–1564.
                                                                   timization applied to reservoir engineering assisted his-
             [11] 贺振宗, 齐宏, 贾腾, 等. 改进人工鱼群算法在气溶胶粒径分布
                                                                   tory matching[J]. Petroleum Exploration and Develop-
                 反演中的应用 [J]. 中南大学学报 (自然科学版), 2016, 47(6):
                                                                   ment, 2020, 47(1): 154–160.
                 2141–2146.
                                                                [19] 陈涛. 基于改进的和声搜索算法的特征基因选择 [J]. 科学技
                 He Zhenzong, Qi Hong, Jia Teng, et al. Application of im-
                                                                   术与工程, 2018, 18(17): 204–210.
                 proved artificial fish school algorithm in retrieving aerosol
                                                                   Chen Tao. Feature gene selection based on improved har-
                 particle size distribution[J]. Journal of Central South Uni-
                                                                   mony search algorithm[J]. Science Technology and Engi-
                 versity(Science and Technology) , 2016, 47(6): 2141–2146.
                                                                   neering, 2018, 18(17): 204–210.
             [12] Qi H, Zhang B, Ren Y, et al. Retrieval of spherical par-
                                                                [20] Salim M S, Ahmed A I. A family of quasi-Newton meth-
                 ticle size distribution using ant colony optimization algo-
                                                                   ods for unconstrained optimization problems[J]. Opti-
                 rithm[J]. Chinese Optics Letters, 2013, 11(11): 112901.
                                                                   mization, 2018, 67(10): 1717–1727.
             [13] 汪雪, 苏明旭, 蔡小舒. 超声衰减谱法颗粒粒径测量中遗传算
                                                                [21] 苏明旭, 蔡小舒. 超细颗粒悬浊液中声衰减和声速的数值模
                 法参数优化 [J]. 上海理工大学学报, 2016, 38(2): 148–153,
                 159.                                              拟 ——4 种模型的比较 [J]. 上海理工大学学报, 2002, 24(1):
                 Wang Xue, Su Mingxu, Cai Xiaoshu. Parameters opti-  21–25, 30.
                                                                   Su Mingxu, Cai Xiaoshu. Numerical study on acoustical
                 mization of genetic inversion algorithm for particle siz-
                 ing by ultrasonic attenuation spectroscopy[J]. Journal of  attenuation and acoustical velocity in suspension of su-
                 University of Shanghai for Science and Technology, 2016,  perfine particle[J]. Journal of University of Shanghai for
                 38(2): 148–153, 159.                              Science and Technology, 2002, 24(1): 21–25, 30.
             [14] Zong W G, Kim J H, Loganathan G V. A new heuristic  [22] 苏明旭, 蔡小舒, 徐峰, 等. 超声衰减法测量悬浊液中颗粒粒
                 optimization algorithm: harmony search[J]. Simulation,  度和浓度 [J]. 声学学报, 2004, 29(5): 440–444.
                 2001, 76(2): 60–68.                               Su Mingxu, Cai Xiaoshu, Xu Feng, et al. The measure-
             [15] 欧阳海滨, 高立群, 孔祥勇, 等. 自适应反向竞争和声搜索算                  ment of particle size and concentration in suspensious
                 法及其优化 [J]. 模式识别与人工智能, 2014, 27(4): 305–312.       by ultrasonic attenuation[J]. Acta Acustica, 2004, 29(5):
                 Ouyang Haibin, Gao Liqun, Kong Xiangyong, et al. Self-  440–444.
                 adapted harmony search algorithm with opposed compe-  [23] 解可新, 韩健, 林友联. 最优化方法 [M]. 修订版. 天津: 天津
                 tition and its optimization[J]. Pattern Recognition and  大学出版社, 2004.
   58   59   60   61   62   63   64   65   66   67   68