Page 106 - 《应用声学》2022年第1期
P. 106
102 2022 年 1 月
He Cunfu, Zheng Mingfang, Lyu Yan, et al. Devel-
4 结论 opment,applications and challenges in ultrasonic guided
waves testing technology[J]. Chinese Journal of Scientific
Lamb 波检测在大型板状结构的无损检测中发 Instrument, 2016, 37(8): 1713–1735.
挥着重要作用,但是导波的频散和多模式特性使得 [6] He J, Yuan F. Damage identification for composite struc-
tures using a cross- correlation reverse-time migration
Lamb 波检测的信号变得比较复杂。本文通过理论
technique[J]. Structural Health Monitoring, 2015, 2(6):
分析对与缺陷作用后的回波信号进行聚焦接收,聚 558–570.
焦接收可有效抑制缺陷回波信号的频散和模式转 [7] 张超, 阎守国, 张碧星. 拓扑成像法的分层波导结构内部缺陷
换问题,在此基础上提出缺陷定位成像算法。应用 检测 [J]. 应用声学, 2017, 36(6): 528–532.
Zhang Chao, Yan Shouguo, Zhang Bixing. Topologi-
有限元仿真软件建立含有缺陷的铝板声学仿真模 cal imaging of steel-aluminum two-layer plate by guided
型,获取缺陷回波数据,结合铝板的频散曲线在一 waves[J]. Journal of Applied Acoustics, 2017, 36(6):
定距离范围内对各个模式的信号进行频散补偿,提 528–532.
[8] 顾建祖, 毕秀祥, 骆英. 板状结构中的导波相控阵损伤成像技
取补偿后信号的峰值,将寻找缺陷位置的问题转化
术 [J]. 河南科技大学学报 (自然科学版), 2018, 39(5): 61–67,
为寻找信号的峰值问题。结果表明当信号补偿距离 73.
等于缺陷与换能器之间的实际距离时,得到的信号 [9] Ing R K, Fink M. Time-reversed Lamb waves[J]. IEEE
Transactions on Ultrasonics Ferroelectrics & Frequency
幅值达到最大,并在二维模型板中验证了此方法在
Control, 1998, 45(4): 1032–1043.
缺陷定位中的准确性。进一步根据频散补偿方法计 [10] 张海燕, 孙修立, 曹亚萍, 等. 基于时间反转理论的聚焦 Lamb
算得到的缺陷与传感器之间的距离,对三维模型板 波结构损伤成像 [J]. 物理学报, 2010, 59(10): 7111–7119.
中缺陷进行成像,成像结果与延时叠加成像结果相 Zhang Haiyan, Sun Xiuli, Cao Yaping, et al. Structural
damage imaging based on time-reversal theory for focus-
比,可以在传感器数量较少的情况下准确地显示缺 ing of Lamb waves[J]. Acta Physica Sinica, 2010, 59(10):
陷的位置,得到分辨率更高的结果,从而更有望应用 7111–7119.
于实际缺陷检测中。 [11] Sicard R, Goyette J, Zellouf D. A numerical dispersion
compensation technique for time recompression of Lamb
wave signals[J]. Ultrasonics, 2002, 40(1–8): 727–732.
参 考 文 献 [12] Xie F, Yan S, Cai M, et al. An optimized guided waves’ fo-
cus method to eliminate the effect of dispersion[C]//2015
IEEE International Ultrasonics Symposium (IUS). IEEE,
[1] 焦敬品, 李海平, 何存富, 等. 基于反转路径差信号的兰姆波
2015.
成像方法 [J]. 物理学报, 2019, 68(12): 129–141.
[13] 陈晓, 倪龙. 用分数阶微分实现时频重叠多模式兰姆波的模式
Jiao Jingpin, Li Haiping, He Cunfu, et al. Lamb wave
分离 [J]. 声学学报, 2020, 45(2): 205–214.
imaging method based on difference signal in reverse
Chen Xiao, Ni Long. Mode separation for multimode
path[J]. Acta Physica Sinica, 2019, 68(12): 129–141.
[2] 周正干, 冯占英, 高翌飞, 等. 超声导波在大型薄铝板缺陷检 Lamb waves overlapped in time and frequency domains by
测中的应用 [J]. 航空学报, 2008, 29(4): 1044–1048. using fractional differential[J]. Acta Acustica, 2020, 45(2):
Zhou Zhenggan, Feng Zhanying, Gao Yifei, et al. Appli- 205–214.
cation of ultrasonic guided waves to defect inspection of [14] 许凯亮, 谈钊, 他得安, 等. 超声导波的频散补偿与模式分离
large thin aluminum plate[J]. Acta Aeronautica et Astro- 算法研究 [J]. 声学学报, 2014, 39(1): 99–103.
nautica Sinica, 2008, 29(4): 1044–1048. Xu Kailiang, Tan Zhao, Ta De’an, et al. Dispersion com-
[3] Cawley P, Alleyne D. The use of Lamb waves for the long pensation and mode separation of the ultrasonic guided
range inspection of large structures[J]. Ultrasonics, 1996, waves[J]. Acta Acustica, 2014, 39(1): 99–103.
34(2): 287–290. [15] Pilarski A, Rose J L. Lamb wave mode selection con-
[4] Haider M F, Joseph R, Giurgiutiu V, et al. An efficient cepts for interfacial weakness analysis[J]. Journal of Non-
analytical global–local (AGL) analysis of the Lamb wave destructive Evaluation, 1992 , 11(3–4): 237–249.
scattering problem for detecting a horizontal crack in a [16] Wang C H, Rose J T, Chang F K. A synthetic time-
stiffened plate[J]. Acta Mechanica, 2020, 231(2): 577–596. reversal imaging method for structural health moni-
[5] 何存富, 郑明方, 吕炎, 等. 超声导波检测技术的发展、应用与 toring[J]. Smart Materials & Structures, 2004, 13(2):
挑战 [J]. 仪器仪表学报, 2016, 37(8): 1713–1735. 415–423.