Page 35 - 《应用声学》2022年第1期
P. 35

第 41 卷 第 1 期           韩哲等: 分布式无线声传感网加权预测误差语声去混响方法                                           31


                 2019, 44(5): 874–886.                          [26] Yoshioka T, Tachibana H, Nakatani T, et al. Adaptive
             [17] Nakatani T, Yoshioka T, Kinoshita K, et al.  Blind  dereverberation of speech signals with speaker-position
                 speech dereverberation with multi-channel linear pre-  change detection[C]//Acoustics, Speech and Signal Pro-
                 diction based on short time fourier transform rep-  cessing (ICASSP), 2009 IEEE International Conference
                 resentation[C]//Acoustics, Speech and Signal Process-  on. IEEE, 2009: 3733–3736.
                 ing (ICASSP), 2008 IEEE International Conference on.  [27] Juki A. Sparse multi-channel linear prediction for blind
                 IEEE, 2008: 85–88.                                speech dereverberation[D]. Oldenburg: University of Old-
             [18] Drude L, Boeddeker C, Heymann J, et al. Integrating neu-  enburg, 2017.
                 ral network based beamforming and weighted prediction  [28] Haykin S. Adaptive filter theory[M]. United States: Pren-
                 error dereverberation[C]// Interspeech, 2018: 3043–3047.  tice Hall, 2002.
                                                                [29] Drude L, Heymann J, Boeddeker C, et al. NARA-WPE:
             [19] Wung J, Jukic A, Malik S, et al. Robust multichannel
                                                                   a Python package for weighted prediction error derever-
                 linear prediction for online speech dereverberation using
                                                                   beration in Numpy and Tensorflow for online and of-
                 weighted householder least squares lattice adaptive fil-
                                                                   fline processing[C]// Speech Communication 13th ITG-
                 ter[J]. IEEE Transactions on Signal Processing, 2020, 68:
                                                                   Symposium. VDE, 2018: 1–5.
                 3559–3574.
                                                                [30] Raphael H. Floating point operations in matrix-vector cal-
             [20] Gergen S, Nagathil A, Martin R. Audio signal classifica-
                                                                   culus[R]. Technische Universität München, 2007.
                 tion in reverberant environments based on fuzzy-clustered
                                                                [31] Alien J B, Berkley D A. Image method for efficiently sim-
                 ad-hoc microphone arrays[C]//Acoustics, Speech and Sig-
                                                                   ulating small-room acoustics[J]. The Journal of the Acous-
                 nal Processing (ICASSP), 2013 IEEE International Con-
                                                                   tical Society of America, 1976: 65(4): 943–950.
                 ference on. IEEE, 2013: 3692–3696.
                                                                [32] Rix A W, Beerends J G, Hollier M P, et al.  Per-
             [21] Pasha S, Ritz C. Clustered multi-channel dereverbera-
                                                                   ceptual evaluation of speech quality (PESQ): a new
                 tion for ad-hoc microphone arrays[C]//Asia-pacific Signal
                                                                   method for speech quality assessment of telephone net-
                 & Information Processing Association Summit & Confer-
                                                                   works and codecs[C]// Acoustics, Speech and Signal Pro-
                 ence. IEEE, 2015: 274–278.
                                                                   cessing (ICASSP), 2001 IEEE International Conference
             [22] Abed-Meraim K, Moulines E. Prediction error method for
                                                                   on. IEEE, 2001: 749–752.
                 second-order blind identification[J]. IEEE Transactions on
                                                                [33] Taal C H, Hendriks R C, Heusdens R, et al. An algorithm
                 Signal Processing, 1997, 45(3): 694–705.
                                                                   for intelligibility prediction of time–frequency weighted
             [23] Yoshioka T, Nakatani T, Kinoshita K, et al.  Speech  noisy speech[J]. IEEE Transactions on Audio, Speech, and
                 dereverberation and denoising based on time vary-  Language Processing, 2011, 19(7): 2125–2136.
                 ing speech model and autoregressive reverberation  [34] Santos J F, Senoussaoui M, Falk T H. An improved non-
                 model[M]//Speech Processing in Modern Communication.  intrusive intelligibility metric for noisy and reverberant
                 Berlin Heidelberg: Springer, 2010: 151–182.       speech[C]// International Workshop on Acoustic Signal
             [24] Jukić A, van Waterschoot T, Gerkmann T, et al. Multi-  Enhancement. IEEE, 2014: 55–59.
                 channel linear prediction-based speech dereverberation  [35] Habets E A P, Gannot S. Generating sensor signals in
                 with sparse priors[J]. IEEE/ACM Transactions on Au-  isotropic noise fields[J]. The Journal of the Acoustical So-
                 dio, Speech, and Language Processing, 2015, 23(9):  ciety of America, 2007, 122(6): 3464–3470.
                 1509–1520.                                     [36] Breithaupt C, Gerkmann T, Martin R. Cepstral smooth-
             [25] Caroselli J, Shafran I, Narayanan A, et al. Adaptive mul-  ing of spectral filter gains for speech enhancement without
                 tichannel dereverberation for automatic speech recogni-  musical noise[J]. IEEE Signal Processing Letters, 2007,
                 tion[C]// Interspeech, 2017: 3877–3881.           14(12): 1036–1039.
   30   31   32   33   34   35   36   37   38   39   40