Page 34 - 《应用声学》2022年第1期
P. 34

30                                                                                   2022 年 1 月


                表 6  DWPE 与 SN-WPE 处理结果主观测听                      [5] Rompaey R V, Moonen M. Distributed adaptive node-
                实验偏好度对比                                            specific signal estimation in a wireless sensor network with
                                                                   partial prior knowledge of the desired source steering vec-
                Table 6 Comparison of preferences for the
                                                                   tor[C]//2019 27th European Signal Processing Conference
                subjective listening test between DWPE
                                                                   (EUSIPCO). IEEE, 2019: 1–5.
                and SN-WPE results                               [6] Markovich-Golan S, Gannot S, Cohen I. Distributed mul-
                                                                   tiple constraints generalized sidelobe canceler for fully
                           DWPE      SN-WPE      Equal             connected wireless acoustic sensor networks[J]. IEEE
                  偏好度      89.06%      3.13%     7.81%             Transactions on Audio, Speech, and Language Process-
                                                                   ing, 2013, 21(2): 343–356.
                表 7  DWPE 与 Cen-WPE 处理结果主观测听                     [7] Zhang J, Heusdens R, Hendriks R C. Rate-distributed
                实验偏好度对比                                            spatial filtering based noise reduction in wireless acous-
                                                                   tic sensor networks[J]. IEEE/ACM Transactions on Au-
                Table 7 Comparison of preferences for the
                                                                   dio, Speech, and Language Processing, 2018, 26(11):
                subjective listening test between DWPE
                                                                   2015–2026.
                and Cen-WPE results                              [8] Li Z, Yiu K F C, Dai Y H, et al. Distributed LCMV beam-
                                                                   former design by randomly permuted ADMM[J]. Digital
                          DWPE       Cen-WPE     Equal             Signal Processing, 2020, 106: 102820.
                 偏好度      12.50%      26.56%     60.94%          [9] 丁建策, 厉剑, 郑成诗, 等. 基于稀疏表示和特征加权的离格
                                                                   双耳声源定位 [J]. 应用声学, 2019, 38(6): 917–925.
             4 结论                                                  Ding Jiance, Li Jian, Zheng Chengshi, et al. Off-grid bin-
                                                                   aural sound source localization using sparse representation
                                                                   and feature weighting[J]. Journal of Applied Acoustics,
                 本文将WPE算法应用到WASNs上,提出了一
                                                                   2019, 38(6): 917–925.
             种实时分布式运算的自适应去混响 DWPE 算法。                           [10] Naylor P, Gaubitch N. Speech dereverberation[M]. Lon-
             在该方法中,所有节点共享相同的参考信号,并交换                               don: Springer, 2010.
                                                                [11] 吴礼福, 陶明明, 郭业才. 频域合成房间频率响应的人工混响
             本地输出,进行并行分布式计算。文中以理论推导
                                                                   方法 [J]. 应用声学, 2020, 39(2): 163–168.
             的方式证明了 DWPE算法的收敛性,在第 3 节通过                            Wu Lifu, Tao Mingming, Guo Yecai.  Artificial rever-
             仿真以及主客观实验,证明了DWPE算法在显著降                               beration by synthesizing room frequency response in the
             低计算和传输成本的同时,能够达到与集中式算法                                frequency domain[J]. Journal of Applied Acoustics, 2020,
                                                                   39(2): 163–168.
             相当的去混响性能。此外,收敛速度与噪声测试实                             [12] Schwarz A, Reindl K, Kellermann W. A two-channel re-
             验结果表明,提出的方法比集中式方法具有更快的                                verberation suppression scheme based on blind signal sep-
             收敛速度和更高的稳定性。                                          aration and wiener filtering[C]//Acoustics, Speech and
                                                                   Signal Processing (ICASSP), 2012 IEEE International
                                                                   Conference on. IEEE, 2012: 113–116.
                            参 考     文   献                       [13] Habets E A P, Benesty J. A two-stage beamforming ap-
              [1] Estrin D, Girod L, Pottie G, et al.  Instrumenting  proach for noise reduction and dereverberation[J]. IEEE
                                                                   Transactions on Audio, Speech, and Language Processing,
                 the world with wireless sensor networks[C]//Acoustics,
                 Speech and Signal Processing (ICASSP), 2001 IEEE In-  2013, 21(5): 945–958.
                 ternational Conference on. IEEE, 2001: 2033–2036.  [14] Miyoshi M, Kaneda Y. Inverse filtering of room acous-
              [2] Markovich-Golan S, Bertrand A, Moonen M, et al. Op-  tics[J]. IEEE Transactions on Audio, Speech, and Lan-
                 timal distributed minimum-variance beamforming ap-  guage Processing, 1988, 36(2): 145–152.
                 proaches for speech enhancement in wireless acoustic sen-  [15] 郭颖, 彭任华, 郑成诗, 等. 偏度最大化多通道逆滤波语声去
                 sor networks[J]. Signal Processing, 2015, 107: 4–20.  混响研究 [J]. 应用声学, 2019, 38(1): 58–67.
              [3] Doclo S, Moonen M, van den Bogaert T, et al. Reduced-  Guo Ying, Peng Renhua, Zheng Chengshi, et al. Max-
                 bandwidth and distributed MWF-based noise reduction  imum skewness-based multichannel inverse filtering for
                 algorithms for binaural hearing aids[J]. IEEE Transactions  speech dereverberation[J]. Journal of Applied Acoustics,
                 on Audio Speech & Language Processing, 2009, 17(1):  2019, 38(1): 58–67.
                 38–51.                                         [16] 厉剑, 彭任华, 郑成诗, 等. 球谐域自适应混响抵消与声源定
              [4] Bertrand A, Moonen M. Distributed adaptive node-  位算法 [J]. 声学学报, 2019, 44(5): 874–886.
                 specific signal estimation in fully connected sensor net-  Li Jian, Peng Renhua, Zheng Chengshi, et al. Dereverber-
                 works—Part I: sequential node updating[J]. IEEE Trans-  ation and localization using adaptive reverberation cancel-
                 actions on Signal Processing, 2010, 58(10): 5277–5291.  lation in the spherical harmonic domain[J]. Acta Acustica,
   29   30   31   32   33   34   35   36   37   38   39