Page 66 - 《应用声学》2022年第5期
P. 66

742                                                                                  2022 年 9 月


             的研究中假定气泡质心静止,并未考虑声辐射力引                             [10] 李想, 陈勇, 封皓, 等. 声波激励下管路轴向分布双气泡动力
             起的气泡平移,也没有考虑气泡存在包膜的情况;另                               学特性分析 [J]. 物理学报, 2020, 69(18): 184703.
                                                                   Li Xiang, Chen Yong, Feng Hao, et al. Axially-distributed
             外,本文也没有研究气泡的非球形形变及其内部的
                                                                   bubble-bubble interaction under acoustic excitation in
             声化学反应;将在未来的报道中对此进行深入讨论。                               pipeline[J]. Acta Physica Sinica, 2020, 69(18): 184703.
                                                                [11] Zhang Y, Zhang Y, Li S. The secondary Bjerknes force be-
                                                                   tween two gas bubbles under dual-frequency acoustic ex-
                            参 考     文   献
                                                                   citation[J]. Ultrasonics Sonochemistry, 2016, 29: 129–145.
                                                                [12] Liang J F, Wang X, Yang J, et al. Dynamics of two inter-
              [1] 陈伟中. 声空化泡对声传播的屏蔽特性 [J]. 应用声学, 2018,
                                                                   acting bubbles in a nonspherical ultrasound field[J]. Ul-
                 37(5): 675–679.
                                                                   trasonics, 2017, 75: 58–62.
                 Chen Weizhong. Cavitation bubbles screen the acoustic
                                                                [13] Zhang L L, Chen W Z, Zhang Y Y, et al. Bubble trans-
                 propagation[J]. The Journal of Applied Acoustics, 2018,
                                                                   lation driven by pulsation in a double-bubble system[J].
                 37(5): 675–679.
                                                                   Chinese Physics B, 2020, 29(3): 034303.
              [2] Yamamoto T, Matsutaka R, Komarov S V. High-speed
                                                                [14] Sun J, Shen Z, Mo R. Theoretical prediction of the yield
                 imaging of ultrasonic emulsification using a water-gallium
                                                                   of strong oxides under acoustic cavitation[J]. Chinese
                 system[J]. Ultrasonics Sonochemistry, 2021, 71: 105387.
                                                                   Physics B, 2019, 28(1): 014301.
              [3] Thombre N V, Gadhekar A P, Patwardhan A V, et
                                                                [15] 王捷. 单一超声空化气泡动力学过程的数值分析 [D]. 西安:
                 al. Ultrasound induced cleaning of polymeric nanofiltra-
                                                                   陕西师范大学, 2006.
                 tion membranes[J]. Ultrasonics Sonochemistry, 2020, 62:
                                                                [16] Wang X, Chen W Z, Wang Q, et al. A theoretical model
                 104891.
                                                                   for the asymmetric transmission of powerful acoustic wave
              [4] Sundaramahalingam M A, Karthikumar S, Kumar R
                                                                   in double-layer liquids[J]. Chinese Physics Letters, 2017,
                 S, et al.  An intensified approach for transesterifica-
                                                                   34(8): 084302.
                 tion of biodiesel from Annona squamosa seed oil using
                                                                [17] Shi J, Yang D S, Zhang H Y, et al. Bubble acoustical scat-
                 ultrasound-assisted homogeneous catalysis reaction and
                                                                   tering cross section under multi-frequency acoustic exci-
                 its process optimization[J]. Fuel, 2021, 291(1): 120195.
                                                                   tation[J]. Chinese Physics B, 2017, 26(7): 074301.
              [5] 莫润阳, 王成会, 胡静, 等. 双气泡振子系统的非线性声响应
                 特性分析 [J]. 物理学报, 2019, 68(14): 144302.          [18] Sadighi-Bonabi R, Rezaee N, Ebrahimi H, et al. Interac-
                 Mo Runyang, Wang Chenghui, Hu Jing, et al. Nonlinear  tion of two oscillating sonoluminescence bubbles in sulfu-
                 acoustic response of two bubble oscillators[J]. Acta Phys-  ric acid[J]. Physical Review E, 2010, 82: 016316.
                 ica Sinica, 2019, 68(14): 144302.              [19] Merouani S, Hamdaoui O, Rezgui Y, et al. Computer
              [6] Ida M. Bubble-bubble interaction: a potential source of  simulation of chemical reactions occurring in collapsing
                 cavitation noise[J]. Physical Review E, 2009, 79: 016307.  acoustical bubble: dependence of free radicals production
              [7] 卢义刚, 吴雄慧. 双泡超声空化计算分析 [J]. 物理学报, 2011,            on operational conditions[J]. Research on Chemical Inter-
                 60(4): 046202.                                    mediates, 2015, 41: 881–897.
                 Lu Yigang, Wu Xionghui.  Computational analysis  [20] 马艳, 林书玉, 徐洁. 声场中气泡间次 Bjerknes 力和气泡群
                 of double-bubble ultrasonic cavitation[J]. Acta Physica  聚现象 [J]. 陕西师范大学学报 (自然科学版), 2018, 46(2):
                 Sinica, 2011, 60(4): 046202.                      40–44, 56.
              [8] 张鹏利, 林书玉, 乔辉, 等. 声场中双空化泡的运动特性 [J]. 应             Ma Yan, Lin Shuyu, Xu Jie. The secondary Bjerknes
                 用声学, 2017, 36(2): 142–147.                        force between two spherical bubbles and bubble accumu-
                 Zhang Pengli, Lin Shuyu, Qiao Hui, et al. The move-  lation[J]. Journal of Shaanxi Normal University (Natural
                 ment characteristics of double cavitation bubble under the  Science Edition), 2018, 46(2): 40–44, 56.
                 sound field[J]. Journal of Applied Acoustics, 2017, 36(2):  [21] 陈伟中. 声空化物理 [M]. 北京: 科学出版社, 2014.
                 142–147.                                       [22] Shen Z Z. Theoretical estimation of sonochemical yield
              [9] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究 [J]. 物                in bubble cluster in acoustic field[J]. Chinese Physics B,
                 理学报, 2018, 67(3): 037802.                         2020, 29(1): 014304.
                 Wang Dexin, Naranmandula. Theoretical study of cou-  [23] Vesipa R, Paissoni E, Manes C, et al. Dynamics of bub-
                 pling double-bubbles ultrasonic cavitation characteris-  bles under stochastic pressure forcing[J]. Physical Review
                 tics[J]. Acta Physica Sinica, 2018, 67(3): 037802.  E, 2021, 103: 023108.
   61   62   63   64   65   66   67   68   69   70   71