Page 185 - 《应用声学》2023年第1期
P. 185
第 42 卷 第 1 期 李晗寅等: 纳米载体负载声敏剂的研究进展和挑战 181
对SDT机理的探索,以及对负载声敏剂纳米载 [12] 刘渊声, 尚志远, 杨继庆, 等. 超声激活血卟啉的机理初探 [J].
体的结构和性能的进一步研究,将有助于声敏剂的 数理医药学杂志, 2007, 20(3): 385–387.
Liu Yuansheng, Shang Zhiyuan, Yang Jiqing, et al. Pral-
声动力效果、ROS 产生情况及靶向性等的提升,也
iminary study on the mechanism of activating hemato-
有利于加速SDT的发展,助其早日实现在临床方面 porphyrin by ultrasound[J]. Journal of Mathematical
的广泛运用。 Medicine, 2007, 20(3): 385–387.
[13] Xu H, Sun X, Yao J, et al. The decomposition of protopor-
phyrin IX by ultrasound is dependent on the generation
参 考 文 献 of hydroxyl radicals[J]. Ultrasonics Sonochemistry, 2015,
27: 623–630.
[1] 张冉, 秦奕, 高东平, 等. 近 70 年我国居民主要死因变化情况 [14] Han X, Huang J, Jing X, et al. Oxygen-deficient black ti-
分析 [J]. 医学信息学杂志, 2019, 40(8): 9–14. tania for synergistic/enhanced sonodynamic and photoin-
Zhang Ran, Qin Yi, Gao Dongping, et al. Analysis on duced cancer therapy at near Infrared-II biowindow[J].
the changes of main causes of death in China in recent ACS Nano, 2018, 12(5): 4545–4555.
70 years[J]. Journal of Medical Informations, 2019, 40(8): [15] Zhang H, Chen J, Zhu X, et al. Ultrasound induced phase-
9–14. transition and invisible nanobomb for imaging-guided tu-
[2] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics mor sonodynamic therapy[J]. Journal of Materials Chem-
2020: GLOBOCAN estimates of incidence and mortality istry B, 2018, 6: 6108–6121.
worldwide for 36 cancers in 185 countries[J]. CA: A Can- [16] Ai X, Lyu L, Zhang Y, et al. Remote regulation of
cer Journal for Clinicians, 2021, 71(3): 209–249. membrane channel activity by site-specific localization
[3] Ray A, Das D S, Song Y, et al. Combination of a novel of lanthanide-doped upconversion nanocrystals[J]. Ange-
HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody en- wandte Chemie (International ed. in English), 2017,
hances anti-tumor immunity and cytotoxicity in multiple 56(11): 3031–3035.
myeloma[J]. Leukemia, 2018, 32(3): 843–846. [17] Hou R, Liang X, Li X, et al. In situ conversion of rose Ben-
[4] Deng H, Zhou Z, Yang W, et al. Endoplasmic reticulum gal microbubbles into nanoparticles for ultrasound imag-
targeting to amplify immunogenic cell death for cancer ing guided sonodynamic therapy with enhanced antitumor
immunotherapy[J]. Nano Letters, 2020, 20(3): 1928–1933. efficacy[J]. Biomaterials Science, 2020, 8(9): 2526–2536.
[5] Lin L, Song J, Song L, et al. Simultaneous Fenton-like ion [18] Beguin E, Gray M D, Logan K A, et al. Magnetic mi-
delivery and glutathione depletion by mno2-based nanoa- crobubble mediated chemo-sonodynamic therapy using a
gent to enhance chemodynamic therapy[J]. Angewandte combined magnetic-acoustic device[J]. Journal of Con-
Chemie International Edition, 2018, 57: 4996–5000. trolled Release, 2020, 317: 23–33.
[6] Yumita N, Nishigaki R, Umemura K, et al. Hemato- [19] Cohen S, Bernstein H. Microparticulate systems for the
porphyrin as a sensitizer of cell damaging effect of ul- delivery of proteins and vaccines[M]. Boca Raton, FL:
trasound[J]. Japanese Journal of Cancer Research, 1989, CRC Press, 2020.
80(3): 219–222. [20] Qu F, Wang P, Zhang K, et al. Manipulation of mitophagy
[7] Xu H, Yu N, Zhang J, et al. Biocompatible Fe- by “All-in-One” nanosensitizer augments sonodynamic
hematoporphyrin coordination nanoplatforms with ef- glioma therapy[J]. Autophagy, 2020, 16(8): 1413–1435.
ficient sonodynamic-chemo effects on deep-seated tu- [21] Zhang Y, Ou Y, Guo J, et al. Ultrasound-triggered breast
mors[J]. Biomaterials, 2020, 257: 120239. tumor sonodynamic therapy through hematoporphyrin
[8] Mi N, Liu Q, Wang X, et al. Induction of sonodynamic monomethyl ether-loaded liposome[J]. Journal of Biomed-
effect with protoporphyrin IX on isolate hepatoma-22 ical Materials Research Part B, 2020, 108(3): 948–957.
cells[J]. Ultrasound in Medicine & Biology, 2009, 35(4): [22] Wang C, Du F. Preparation, characterization, and sono-
680–686. dynamic antitumor effect of the folate receptor targeted
[9] Xu F, Hu M, Liu C, et al. Yolk-structured multifunc- FA-EN-β-CD containing hematoporphyrin in vitro[J].
tional up-conversion nanoparticles for synergistic photo- Drug Development Research, 2020, 81(5): 585–592.
dynamicsonodynamic antibacterial resistance therapy[J]. [23] Liu Q, Wang X, Wang P, et al. Sonodynamic antitumor
Biomaterials Science, 2017, 5(4): 678–685. effect of protoporphyrin IX disodium salt on S180 solid
[10] Chen H, Zhou X, Wang A, et al. Synthesis and biological tumor[J]. Chemotherapy, 2007, 53(6): 429–436.
characterization of novel rose Bengal derivatives with im- [24] Liu Y, Wan G, Guo H, et al. A multifunctional nanoparti-
proved amphiphilicity for sono-photodynamic therapy[J]. cle system combines sonodynamic therapy and chemother-
European Journal of Medicinal Chemistry, 2018, 145: apy to treat hepatocellular carcinoma[J]. Nano Research,
86–95. 2017, 10(3): 834–855.
[11] Fu J, Li T, Zhu Y, et al. Ultrasound-activated oxygen and [25] Han X, Huang J, Jing X, et al. Oxygen-deficient black
ROS generation nanosystem systematically modulates tu- titania for synergistic/enhanced sonodynamic and pho-
mor microenvironment and sensitizes sonodynamic ther- toinduced cancer therapy at near infrared-II biowindow[J].
apy for hypoxic solid tumors[J]. Advanced Functional Ma- ACS Nano, 2018, 12(5): 4545–4555.
terials, 2019, 29(51): 1906195.