Page 185 - 《应用声学》2023年第1期
P. 185

第 42 卷 第 1 期              李晗寅等: 纳米载体负载声敏剂的研究进展和挑战                                           181


                 对SDT机理的探索,以及对负载声敏剂纳米载                          [12] 刘渊声, 尚志远, 杨继庆, 等. 超声激活血卟啉的机理初探 [J].
             体的结构和性能的进一步研究,将有助于声敏剂的                                数理医药学杂志, 2007, 20(3): 385–387.
                                                                   Liu Yuansheng, Shang Zhiyuan, Yang Jiqing, et al. Pral-
             声动力效果、ROS 产生情况及靶向性等的提升,也
                                                                   iminary study on the mechanism of activating hemato-
             有利于加速SDT的发展,助其早日实现在临床方面                               porphyrin by ultrasound[J]. Journal of Mathematical
             的广泛运用。                                                Medicine, 2007, 20(3): 385–387.
                                                                [13] Xu H, Sun X, Yao J, et al. The decomposition of protopor-
                                                                   phyrin IX by ultrasound is dependent on the generation
                            参 考     文   献                          of hydroxyl radicals[J]. Ultrasonics Sonochemistry, 2015,
                                                                   27: 623–630.
              [1] 张冉, 秦奕, 高东平, 等. 近 70 年我国居民主要死因变化情况            [14] Han X, Huang J, Jing X, et al. Oxygen-deficient black ti-
                 分析 [J]. 医学信息学杂志, 2019, 40(8): 9–14.               tania for synergistic/enhanced sonodynamic and photoin-
                 Zhang Ran, Qin Yi, Gao Dongping, et al. Analysis on  duced cancer therapy at near Infrared-II biowindow[J].
                 the changes of main causes of death in China in recent  ACS Nano, 2018, 12(5): 4545–4555.
                 70 years[J]. Journal of Medical Informations, 2019, 40(8):  [15] Zhang H, Chen J, Zhu X, et al. Ultrasound induced phase-
                 9–14.                                             transition and invisible nanobomb for imaging-guided tu-
              [2] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics  mor sonodynamic therapy[J]. Journal of Materials Chem-
                 2020: GLOBOCAN estimates of incidence and mortality  istry B, 2018, 6: 6108–6121.
                 worldwide for 36 cancers in 185 countries[J]. CA: A Can-  [16] Ai X, Lyu L, Zhang Y, et al.  Remote regulation of
                 cer Journal for Clinicians, 2021, 71(3): 209–249.  membrane channel activity by site-specific localization
              [3] Ray A, Das D S, Song Y, et al. Combination of a novel  of lanthanide-doped upconversion nanocrystals[J]. Ange-
                 HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody en-  wandte Chemie (International ed.  in English), 2017,
                 hances anti-tumor immunity and cytotoxicity in multiple  56(11): 3031–3035.
                 myeloma[J]. Leukemia, 2018, 32(3): 843–846.    [17] Hou R, Liang X, Li X, et al. In situ conversion of rose Ben-
              [4] Deng H, Zhou Z, Yang W, et al. Endoplasmic reticulum  gal microbubbles into nanoparticles for ultrasound imag-
                 targeting to amplify immunogenic cell death for cancer  ing guided sonodynamic therapy with enhanced antitumor
                 immunotherapy[J]. Nano Letters, 2020, 20(3): 1928–1933.  efficacy[J]. Biomaterials Science, 2020, 8(9): 2526–2536.
              [5] Lin L, Song J, Song L, et al. Simultaneous Fenton-like ion  [18] Beguin E, Gray M D, Logan K A, et al. Magnetic mi-
                 delivery and glutathione depletion by mno2-based nanoa-  crobubble mediated chemo-sonodynamic therapy using a
                 gent to enhance chemodynamic therapy[J]. Angewandte  combined magnetic-acoustic device[J]. Journal of Con-
                 Chemie International Edition, 2018, 57: 4996–5000.  trolled Release, 2020, 317: 23–33.
              [6] Yumita N, Nishigaki R, Umemura K, et al.  Hemato-  [19] Cohen S, Bernstein H. Microparticulate systems for the
                 porphyrin as a sensitizer of cell damaging effect of ul-  delivery of proteins and vaccines[M]. Boca Raton, FL:
                 trasound[J]. Japanese Journal of Cancer Research, 1989,  CRC Press, 2020.
                 80(3): 219–222.                                [20] Qu F, Wang P, Zhang K, et al. Manipulation of mitophagy
              [7] Xu H, Yu N, Zhang J, et al.  Biocompatible Fe-   by “All-in-One” nanosensitizer augments sonodynamic
                 hematoporphyrin coordination nanoplatforms with ef-  glioma therapy[J]. Autophagy, 2020, 16(8): 1413–1435.
                 ficient sonodynamic-chemo effects on deep-seated tu-  [21] Zhang Y, Ou Y, Guo J, et al. Ultrasound-triggered breast
                 mors[J]. Biomaterials, 2020, 257: 120239.         tumor sonodynamic therapy through hematoporphyrin
              [8] Mi N, Liu Q, Wang X, et al. Induction of sonodynamic  monomethyl ether-loaded liposome[J]. Journal of Biomed-
                 effect with protoporphyrin IX on isolate hepatoma-22  ical Materials Research Part B, 2020, 108(3): 948–957.
                 cells[J]. Ultrasound in Medicine & Biology, 2009, 35(4):  [22] Wang C, Du F. Preparation, characterization, and sono-
                 680–686.                                          dynamic antitumor effect of the folate receptor targeted
              [9] Xu F, Hu M, Liu C, et al. Yolk-structured multifunc-  FA-EN-β-CD containing hematoporphyrin in vitro[J].
                 tional up-conversion nanoparticles for synergistic photo-  Drug Development Research, 2020, 81(5): 585–592.
                 dynamicsonodynamic antibacterial resistance therapy[J].  [23] Liu Q, Wang X, Wang P, et al. Sonodynamic antitumor
                 Biomaterials Science, 2017, 5(4): 678–685.        effect of protoporphyrin IX disodium salt on S180 solid
             [10] Chen H, Zhou X, Wang A, et al. Synthesis and biological  tumor[J]. Chemotherapy, 2007, 53(6): 429–436.
                 characterization of novel rose Bengal derivatives with im-  [24] Liu Y, Wan G, Guo H, et al. A multifunctional nanoparti-
                 proved amphiphilicity for sono-photodynamic therapy[J].  cle system combines sonodynamic therapy and chemother-
                 European Journal of Medicinal Chemistry, 2018, 145:  apy to treat hepatocellular carcinoma[J]. Nano Research,
                 86–95.                                            2017, 10(3): 834–855.
             [11] Fu J, Li T, Zhu Y, et al. Ultrasound-activated oxygen and  [25] Han X, Huang J, Jing X, et al. Oxygen-deficient black
                 ROS generation nanosystem systematically modulates tu-  titania for synergistic/enhanced sonodynamic and pho-
                 mor microenvironment and sensitizes sonodynamic ther-  toinduced cancer therapy at near infrared-II biowindow[J].
                 apy for hypoxic solid tumors[J]. Advanced Functional Ma-  ACS Nano, 2018, 12(5): 4545–4555.
                 terials, 2019, 29(51): 1906195.
   180   181   182   183   184   185   186   187   188   189   190