Page 43 - 《应用声学》2023年第3期
P. 43

第 42 卷 第 3 期     于小涛等: 有限元/边界元耦合方法在海洋生物目标强度特性研究的应用                                          481


             用价值的是鱼群的散射特性 (如频率响应特征、平                             [8] Gorska N. Modelling the acoustic effect of swimbladder
             均单体 TS)。后续在单体 TS 特性研究的基础上,将                           compression in herring[J]. ICES Journal of Marine Sci-
                                                                   ence, 2003, 60(3): 548–554.
             考虑生物集群中大量单体的体长、游泳倾角的统计
                                                                 [9] Foote  K  G,  Francis  D  T.  Comparing  Kirchhoff-
             特征,分析生物集群的平均散射频率响应特征和平                                approximation and boundary-element models for comput-
             均单体 TS,推动 FEM/BEM 耦合方法实际应用于                           ing gadoid target strengths[J]. The Journal of the Acous-
             海洋生物资源声学资源评估。                                         tical Society of America, 2002, 111(4): 1644–1654.
                                                                [10] Clay C S. Composite ray‐mode approximations for
                 由于 FEM/BEM 耦合方法基于对目标几何的
                                                                   backscattered sound from gas‐filled cylinders and swim-
             网格化离散求解波动方程,计算结果的准确性很                                 bladders[J]. The Journal of the Acoustical Society of
             大程度上取决于网格的疏密,一般网格最大尺寸                                 America, 1992, 92(4): 2173–2180.
                                                                [11] Clay C S, Horne J K. Acoustic models of fish: the Atlantic
             不超过声波波长的 1/6。因此,频率越高 (目标尺
                                                                   cod (Gadus morhua)[J]. The Journal of the Acoustical So-
             寸与入射声波波长的比值越大),网格剖分越密,                                ciety of America, 1994, 96(3): 1661–1668.
             FEM/BEM 耦合方法对计算能力的需求呈指数增                           [12] Chu D, Foote K G, Stanton T K. Further analysis of tar-
             长。考虑到未来研究生物集群的散射特性需在体长、                               get strength measurements of Antarctic krill at 38 and
                                                                   120 kHz: comparison with deformed cylinder model and
             游泳倾角的二维空间进行统计平均,FEM/BEM耦
                                                                   inference of orientation distribution[J]. The Journal of the
             合方法计算过程中对频率、体长、游泳倾角3 个维度                              Acoustical Society of America, 1993, 93(5): 2985–2988.
             进行参数化扫描,计算量较大。因参数化扫描产生                             [13] Stanton T K, Chu D. Review and recommendations for
             的计算量,常用的解决方案是增加计算节点、利用                                the modelling of acoustic scattering by fluid-like elongated
                                                                   zooplankton: euphausiids and copepods[J]. ICES Journal
             并行计算等方式。同时,可结合几何模型的优化,充                               of Marine Science, 2000, 57(4): 793–807.
             分利用目标的对称性以降低计算规模;对于具有不                             [14] Zhao X. In situ target-strength measurement of young
             规则几何形状的生物,可将其细分为更小的子域,合                               hairtail (Trichiurus haumela) in the Yellow Sea[J]. ICES
                                                                   Journal of Marine Science, 2006, 63(1): 46–51.
             理设置网格大小,通过收敛性试验,保证一定计算精
                                                                [15] Zhao X, Wang Y, Dai F. Depth-dependent target strength
             度的前提下,提高单次计算效率。                                       of anchovy (Engraulis japonicus) measured in situ[J].
                                                                   ICES Journal of Marine Science, 2008, 65(6): 882–888.
                                                                [16] 蔺丹清, 张辉, 李君轶, 等. 4 种常见淡水养殖鱼类目标强度测
                            参 考     文   献                          定与差异分析 [J]. 中国水产科学, 2017, 24(1): 1–10.
                                                                   Lin Danqing, Zhang Hui, Li Junyi, et al. Target strength
                                                                   of four freshwater cultured fish species and a variance
              [1] Simmonds J, MacLennan D N. Fisheries acoustics: theory
                                                                   analysis[J]. Journal of Fishery Sciences of China, 2017,
                 and practice[M]. 2nd Edition. Blackwell Science, 2005.
                                                                   24(1): 1–10.
              [2] 赵宪勇, 陈毓桢, 李显森, 等. 多种类海洋渔业资源声学评估
                 技术与方法 [C]. 我国专属经济区和大陆架勘测研究专项学术                 [17] 尚晓明, 孔令民, 吴常文. 三种东海重要经济鱼类目标强度随
                                                                   角度变化的椭球体模型及实验测定的研究 [J]. 海洋与湖沼,
                 交流会, 2005: 341–353.
              [3] Korneliussen R J, Ona E. Synthetic echograms generated  2015, 46(3): 636–641.
                 from the relative frequency response[J]. ICES Journal of  Shang Xiaoming, Kong Lingmin, Wu Changwen.  On
                 Marine Science, 2003, 60(3): 636–640.             target strength of several important economic fishes[J].
              [4] 王新良, 赵宪勇, 左涛, 等. 黄海太平洋磷虾回波映像识别与                  Oceanologia et Limnologia Sinica, 2015, 46(3): 636–641.
                 资源密度评估 [J]. 水产学报, 2016, 40(7): 1080–1088.      [18] 于海圆, 赵宪勇. 鳀鱼 (Engraulis japonicus) 目标强度的模
                 Wang Xinliang, Zhao Xianyong, Zuo Tao, et al. Acous-  型法研究 [J]. 应用声学, 2007, 26(5): 267–276.
                 tical identification and density estimation of Euphau-  Yu Haiyuan, Zhao Xianyong. Modeling study on the tar-
                 sia Pacifica in the Yellow Sea[J]. Journal of Fisheries of  get strength of anchovy (Engraulis japonicus)[J]. Journal
                 China, 2016, 40(7): 1080–1088.                    of Applied Acoustics, 2007, 26(5): 267–276.
              [5] Johnson R K. Sound scattering from a fluid sphere revis-  [19] Tang Y, Nishimori Y, Furusawa M. The average three-
                 ited[J]. The Journal of the Acoustical Society of America,  dimensional target strength of fish by spheroid model for
                 1977, 61(2): 375–377.                             sonar surveys[J]. ICES Journal of Marine Science, 2009,
              [6] Furusawa M. Prolate spheroidal models for predicting gen-  66(6): 1176–1183.
                 eral trends of fish target strength[J]. The Journal of the  [20] 张波. 鱼群声散射模型及其仿真研究 [D]. 哈尔滨: 哈尔滨工
                 Acoustical Society of Japan (E), 1988, 9(1): 13–24.  程大学, 2009.
              [7] Stanton T K. Sound scattering by cylinders of finite  [21] 杜伟东, 李海森, 陈宝伟, 等. 一种基于声散射特性的有鳔鱼
                 length. III. Deformed cylinders[J]. The Journal of the  特征获取方法 [J]. 应用声学, 2014, 33(6): 505–511.
                 Acoustical Society of America, 1989, 86(2): 691–705.  Du Weidong, Li Haisen, Chen Baowei, et al. Features
   38   39   40   41   42   43   44   45   46   47   48