Page 173 - 《应用声学》2025年第1期
P. 173

第 44 卷 第 1 期           王绪虎等: 平行线阵扩展协方差矩阵二维波达方向估计方法                                          169


             [11] Marcos S, Marsal A, Benidir M. Performances analy-  [15] 张小飞, 张立岑, 孙华普, 等. 双平行线阵中基于 Euler 变换
                 sis of the propagator method for source bearing estima-  传播算子的二维 DOA 估计算法 [J]. 南京航空航天大学学报,
                 tion[C]//Acoustics, Speech, & Signal Processing, on IEEE  2015, 47(3): 324–331.
                 International Conference. IEEE Computer Society, 1994:  Zhang Xiaofei, Zhang Licen, Sun Huapu, et al.  Two-
                 237–240.                                          dimensional DOA estimation algorithm for two parallel
             [12] 姚泽, 张歆. 双平行线阵的水下二维 DOA 估计算法 [J]. 声学              linear arrays via Euler transformation and propagator
                 技术, 2021, 40(6): 874–878.                         method[J]. Journal of Nanjing University of Aeronautics
                 Yao Ze, Zhang Xin. An underwater two-dimensional DOA  and Astronautics, 2015, 47(3): 324–331.
                 estimation algorithm based on double parallel linear ar-  [16] Dai X, Zhang X, Wang Y. Extended DOA-matrix method
                 rays[J]. Technical Acoustics, 2021, 40(6): 51–54.  for DOA estimation via two parallel linear arrays[J]. IEEE
             [13] He W, Yang X, Wang Y. A High-resolution and low-  Communications Letters, 2019, 23(11): 1981–1984.
                 complexity DOA estimation method with unfolded co-  [17] Vu D T, Renaux A, Rémy Boyer, et al. A Cramér-Rao
                 prime linear arrays[J]. Sensors, 2019, 20(1): 218  bounds based analysis of 3D antenna array geometries
             [14] Yin Q. Estimating 2-D angles of arrival via two paral-  made from ULA branches[J]. Multidimensional Systems
                 lel linear array[C]. International Conference on Acoustics,  & Signal Processing, 2013, 24(1): 121–155.
                 Speech, and Signal Processing, 1989.
   168   169   170   171   172   173   174   175   176   177   178