Page 188 - 《应用声学》2025年第3期
P. 188

722                                                                                  2025 年 5 月


                                                                   ing least square method by combining equal thinner layers
                                                                   with weighting matrix[J]. Geophysical and Geochemical
                            参 考     文   献                          Exploration, 2003, 27(3): 212–216.
                                                                [10] Yamanaka H, Ishida H. Application of genetic algorithms
              [1] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法 (VWTM)                to an inversion of surface-wave dispersion data[J]. Bul-
                 的多道 Rayleigh 波分析方法 [J]. 地球物理学报, 2019, 62(1):      letin of the Seismological Society of America, 2008, 86(2):
                 298–305.                                          436–444.
                 Yang Zhentao, Chen Xiaofei, Pan Lei, et al. Multi-channel  [11] 彭刘亚, 任川. 基于粒子群算法的瑞雷波频散曲线反演研
                 analysis of Rayleigh waves based on the vector wavenum-  究 [J]. 地球物理学进展, 2018, 33(4): 1682–1686.
                 ber tansformation method (VWTM) [J]. Chinese Journal  Peng Liuya, Ren Chuan.  Inversion of Rayleigh wave
                 of Geophysics, 2019, 62(1): 298–305.              dispersion curve using particle swarm optimization algo-
              [2] 李启成, 闫晓丹, 孙颖川, 等. 利用瑞利面波进行岩性分层 [J].              rithm[J]. Progress in Geophysics, 2018, 33(4): 1682–1686.
                 地球物理学进展, 2016, 31(5): 2124–2127.               [12] Pan L, Chen X, Wang J, et al. Sensitivity analysis of dis-
                 Li Qicheng, Yan Xiaodan, Sun Yingchuan, et al. Measure-  persion curves of Rayleigh waves with fundamental and
                 ment of superstratum wave velocity with reflection wave  higher modes[J]. Geophysical Journal International, 2019,
                 on dip section[J]. Progress in Geophysics, 2016, 31(5):  216(2): 1276–1303.
                 2124–2127.                                     [13] Biot M A. The interaction of Rayleigh and Stoneley waves
              [3] 鲁来玉, 王文, 张碧星, 等. 层状半空间中的多模问题和瑞利                  in the ocean bottom[J]. Bulletin of the Seismological So-
                 波勘探 [J]. 物探化探计算技术, 2001, 23(3): 215–221.
                                                                   ciety of America, 1952, 42(1): 81–93.
                 Lu Laiyu, Wang Wen, Zhang Bixing, et al. Guided modes
                                                                [14] Harkrider D G. Surface waves in multilayered elastic me-
                 in stratified half-space and Rayleigh wave exploration[J].
                                                                   dia I. Rayleigh and Love waves from buried sources in a
                 Computational Techniques for Geophysical and Geochem-
                                                                   multilayered elastic half-space[J]. Bulletin of the Seismo-
                 ical Exploration, 2001, 23(3): 215–221.
                                                                   logical Society of America, 1964, 54(2): 627–679.
              [4] Haskell N A. The dispersion of surface waves on multi-
                                                                [15] Zhang Y, Wang Y, Wang X C, et al.  Dispersion
                 layered media[J]. Bulletin of the Seismological Society of
                                                                   of Scholte wave under horizontally layered viscoelas-
                 America, 1953, 43(1): 17–34.
                                                                   tic seabed[J]. Geophysical Journal International, 2023,
              [5] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中
                                                                   235(2): 1712–1724.
                 的应用: 以苏州河地区为例 [J]. 地球物理学报, 2020, 63(1):
                                                                [16] Yan Y W, Chen X F, Nan H, et al.  Modern inver-
                 247–255.
                                                                   sion workflow of the multimodal surface wave dispersion
                 Li Xueyan, Chen Xiaofei, Yang Zhentao, et al. Applica-
                                                                   curves: staging strategy and pattern search with embed-
                 tion of high-order surface waves in shallow exploration:
                                                                   ded Kuhn-Munkres algorithm[J]. Geophysical Journal In-
                 An example of the Suzhou river, Shanghai[J]. Chinese
                                                                   ternational, 2022, 231(1): 47–71.
                 Journal of Geophysics, 2020, 63(1): 247–255.
                                                                [17] Conn A R, Gould N I M, Toint P. A globally convergent
              [6] 易佳, 刘伊克, 胡昊, 等. 面波频散谱多模式高分辨率成像的
                                                                   augmented lagrangian algorithm for optimization with
                 多道信号比较法 [J]. 地球物理学报, 2021, 64(5): 1710–1720.
                                                                   general constraints and simple bounds[J]. SIAM Journal
                 Yi Jia, Liu Yike, Hu Hao, et al. High-resolution mul-
                                                                   on Numerical Analysis, 1991, 28(2): 545–572.
                 timode surface-wave dispersion spectrum imaging with a
                                                                [18] Kuhn H W. The hungarian method for the assignment
                 multichannel signal comparison method[J]. Chinese Jour-
                                                                   problem[J]. Naval Research Logistics, 1955, 2(1–2): 83–97.
                 nal of Geophysics, 2021, 64(5): 1710–1720.
              [7] Song X H, Li D Y, Gu H M, et al. Insights into per-  [19] Munkres J. Algorithms for the assignment and transporta-
                 formance of pattern search algorithms for high-frequency  tion problems[J]. Journal of the Society for Industrial and
                 surface wave analysis[J]. Computers & Geosciences, 2009,  Applied Mathematics, 1957, 5(1): 32–38.
                 35(8): 1603–1619.                              [20] Vossen R V, Robertsson J O A, Chapman C H. Finite-
              [8] Haario H, Saksman E. Simulated annealing process in gen-  difference modeling of wave propagation in a fluid-solid
                 eral state space[J]. Advances in Applied Probability, 1991,  configuration[J]. Geophysics, 2002, 67(2): 618–624.
                 23(4): 866–893.                                [21] Michael P E. Dispersion estimation from borehole acous-
              [9] 宋先海, 肖柏勋, 黄荣荣, 等. 用等厚薄层权重自适应迭代                   tic arrays using a modified matrix pencil algorithm[C]//
                 阻尼最小二乘法反演瑞雷波频散曲线 [J]. 物探与化探, 2003,                Asilomar Conference on Signals, Systems and Computers.
                 27(3): 212–216.                                   IEEE, 1995.
                 Song Xianhai, Xiao Baixun, Huang Rongrong, et al. The  [22] 李光辉. 陆地地震勘探随机噪声建模与分析 [D]. 长春: 吉林
                 inversion of dispersion curve using self-adaptively damp-  大学, 2016.
   183   184   185   186   187   188   189   190   191   192   193