Page 213 - 应用声学2019年第4期
P. 213

第 38 卷 第 4 期             程雪等: 低复杂度的 MIMO 声呐协方差矩阵重构方法                                        673


             条件下,两种算法都能够有效地抑制噪声,提高算                             [12] Hassanien A, Vorobyov S A, Gershman A B. Moving tar-
             法的测向精度。在信噪比较低的情况下,低复杂度                                get parameters estimation in noncoherent MIMO radar
                                                                   systems[J]. IEEE Transactions on Signal Processing, 2012,
             ESPRIT具有更好的测向性能。水池实验结果验证
                                                                   60(5): 2354–2361.
             了利用低复杂度协方差矩阵重构算法对目标进行                              [13] Boyer R. Performance bounds and angular resolution limit
             精确测向的有效性。                                             for the moving colocated MIMO radar[J]. IEEE Transac-
                                                                   tions on Signal Processing, 2011, 59(4): 1539–1552.
                                                                [14] Wilcox D, Sellathurai M. On MIMO radar subarrayed
                                                                   transmit beamforming[J]. IEEE Transactions on Signal
                                                                   Processing, 2012, 60(4): 2076–2081.
                            参 考     文   献
                                                                [15] Hua G, Abeysekera S S. Receiver design for range and
                                                                   doppler sidelobe suppression using MIMO and phased-
              [1] Li J, Stoica P. MIMO radar signal processing[M]. Wiley  array radar[J]. IEEE Transactions on Signal Processing,
                 IEEE Press, 2009.                                 2013, 61(6): 1315–1326.
              [2] Fishler E, Haimovich A, Blum R, et al. MIMO radar:  [16] Hassanien A, Vorobyov S A. Phased-MIMO radar: a
                 an idea whose time has come[C]. IEEE National Radar  tradeoff between phased-array and MIMO radars[J].
                 Conference, 2004: 71–78.                          IEEE Transactions on Signal Processing, 2010, 58(6):
              [3] Bekkerman I, Tabrikian J. Target detection and localiza-  3137–3151.
                 tion using MIMO radars and sonars[J]. IEEE Transactions  [17] Cheng X, Wang Y. Multi-target localization analysis
                 on Signal Processing, 2006, 54(10): 3873–3883.    based on nonparametric spectral estimation method for
              [4] Yan P, Petillot Y, Capus C, et al.  Broadband    MIMO sonar[C]. 2017 IEEE International Conference on
                 MIMO sonar system: a theoretical and experimental ap-  Signal Processing, Communications and Computing (IC-
                 proach[C]. International Conference and Exhibition on  SPCC), 2017.
                 Underwater Acoustic Measurements, 2009.        [18] Khabbazibasmenj A, Hassanien A, Vorobyov S A, et al.
              [5] Sharaga N, Tabrikian J, Messer H. Optimal cognitive  Efficient transmit beamspace design for search-free based
                 beamforming for target tracking in MIMO radar/sonar[J].  DOA estimation in MIMO radar[J]. IEEE Transactions
                 IEEE Journal of Selected Topics in Signal Processing,  on Signal Processing, 2014, 62(6): 1490–1500.
                 2015, 9(8): 1440–1450.                         [19] Hassanien A, Vorobyov S A, Khabbazibasmenj A. Trans-
              [6] Li J, Stoica P, Xu L, et al. On parameter identifiability  mit radiation pattern invariance in MIMO radar with ap-
                 of MIMO radar[J]. IEEE Signal Processing Letters, 2008,  plication to DOA estimation[J]. IEEE Signal Processing
                 14(12): 968–971.                                  Letters, 2015, 22(10): 1609–1613.
              [7] Li J, Stoica P. MIMO radar with colocated antennas[J].  [20] Zhang X, Xu D. Low-complexity ESPRIT-based DOA
                 IEEE Signal Processing Magazine, 2007, 24(5): 106–114.  estimation for colocated MIMO radar using reduced-
              [8] Haimovich A M, Blum R S, Cimini L J. MIMO radar  dimension transformation[J]. Electronics Letters, 2011,
                 with widely separated antennas[J]. IEEE Signal Process-  47(4): 283–284.
                 ing Magazine, 2008, 25(1): 116–129.            [21] Zhang Y, Zhang G, Wang X. Computationally efficient
              [9] Maio A D, Lops M, Venturino L. Diversity-integration  DOA estimation for monostatic MIMO radar based on
                 tradeoffs in MIMO detection[J]. IEEE Transactions on  covariance matrix reconstruction[J]. Electronics Letters,
                 Signal Processing, 2008, 56(10): 5051–5061.       2017, 53(2): 111–113.
             [10] He Q, Blum R S, Godrich H, et al. Target velocity estima-  [22] Tan J, Nie Z, Wen D. Low complexity MUSIC-
                 tion and antenna placement for MIMO radar with widely  based direction-of-arrival algorithm for monostatic MIMO
                 separated antennas[J]. IEEE Journal of Selected Topics in  radar[J]. Electronics Letters, 2017, 53(4): 275–277.
                 Signal Processing, 2010, 4(1): 79–100.         [23] Zhang W, Vorobyov S A. Joint robust transmit/receive
             [11] Akcakaya M, Nehorai A. MIMO radar sensitivity analy-  adaptive beamforming for MIMO radar using probability-
                 sis for target detection[J]. IEEE Transactions on Signal  constrained optimization[J]. IEEE Signal Processing Let-
                 Processing, 2011, 59(7): 3241–3250.               ters, 2015, 23(1): 112–116.
   208   209   210   211   212   213   214   215   216   217   218