Page 12 - 《应用声学》2022年第4期
P. 12

510                                                                                  2022 年 7 月


             所以,基于 RAP 的目标定位需要进一步向低频、高                          [12] Worcester P F, Spindel R C. North Pacific Acoustic Labo-
             处理增益、环境适配性好等方向发展。相关侧重点                                ratory[J]. The Journal of the Acoustical Society of Amer-
                                                                   ica, 2005, 117(3 Pt 2): 1499–1510.
             可以从以下几个方面关注:(1) 研究 RAP 下基于矢                        [13] Kathleen E W, Mehdi F, Matthew A, et al. Analysis of
             量水听器阵列的目标定位方法, 抑制强干扰并对弱                               the vertical structure of deep ocean noise using measure-
                                                                   ments from the SPICEX and PhilSea experiments[J]. Pro-
             目标进行定位。矢量水听器阵列除了拥有声压水听
                                                                   ceedings of Meetings on Acoustics, 2013, 19(1): 070041.
             器阵的优点外,还可以对目标进行方位估计、通过声                            [14] Shi Y, Yang Y X, Tian J W, et al. Long-term ambi-
             压振速联合处理抑制各项同性噪声、相同阵列孔径                                ent noise statistics in the northeast South China Sea[J].
                                                                   The Journal of the Acoustical Society of America, 2019,
             下可对更远的目标进行探测与定位。此外,RAP 下                              145(6): 501–507.
             的标量垂直阵目标定位技术已较为成熟,这就为矢                             [15] Vincent J V, Bruce H. Reliable acoustic path tomogra-
             量垂直阵的相关应用提供良好基础。(2) 研究复杂                              phy at Aloha Cable Observatory[J]. The Journal of the
                                                                   Acoustical Society of America, 2016, 140(4): 3184–3184.
             海洋环境中不同角度扇区声场频率 -距离干涉结构                            [16] 许惠. 基于可靠声路径的深海水声通信网络连通性分析 [D].
             的各向异性,从而发展可以突破声场纵向相关半径                                哈尔滨: 哈尔滨工程大学, 2017.
                                                                [17] Duan R, Yang K D, Wu F, et al. Particle filter for mul-
             的大孔径阵列处理技术与弱目标信号增强技术                      [55] 。      tipath time delay tracking from correlation functions in
             (3) 研究基于机器学习的环境自适应的目标探测定                              deep water[J]. The Journal of the Acoustical Society of
                                                                   America, 2018, 144(1): 397–411.
             位技术,发展环境适应性更高的定位方法等。
                                                                [18] Colosi J A, Chandrayadula T K, Voronovich A G, et al.
                                                                   Coupled mode transport theory for sound transmission
                            参 考     文   献                          through an ocean with random sound speed perturbations
                                                                   through an ocean with random sound speed perturbations:
              [1] 邓秀华, 刘飞, 梅新华. 一种基于锚系垂直阵列的水下移动目                   coherence in deep water environments[J]. The Journal of
                 标警戒方法 [J]. 数字海洋与水下攻防, 2020, 3(1): 76–81.          Acoustical Society of America, 2013, 134(4): 3119–3133.
                 Deng Xiuhua, Liu Fei, Mei Xinhua. An alert method for  [19] Li H, Yang K D, Lei Z X, et al. Vertical correlation of
                 underwater mobile target based on moored vertical ar-  the acoustic field in deep water measured with explosive
                 ray[J]. Digital Ocean & Underwater Warfare, 2020, 3(1):  sources[J]. Acoustics Australia, 2017, 45(3): 529–538.
                 76–81.                                         [20] Qiu C Y, Ma S Q, Chen Y, et al. Reliable acoustic path
              [2] 李辉. 深海大深度声场特性与目标定位技术研究 [D]. 西安:                  and direct-arrival zone spatial gain analysis for a vertical
                 西北工业大学, 2017.                                     line array[J]. Sensors(Basel), 2018, 18(10): 3462.
              [3] 杨坤德, 李辉, 段睿. 深海声传播信道和目标被动定位研究现                [21] Yang K D, Li H, Duan R, et al. Analysis on the character-
                 状 [J]. 中国科学院院刊, 2019, 34(3): 314–320.             istic of cross-correlated field and its potential application
                 Yang Kunde, Li Hui, Duan Rui.  Research on acous-  on source localization in deep water[J]. Journal of Com-
                 tic propagation and passive localization in deep water[J].  putational Acoustics, 2017, 25(2): 1–15.
                 Billetin of Chinese Academy of Sciences, 2019, 34(3):  [22] Duan R, Yang K D, Ma Y L, et al. Moving source lo-
                 314–320.                                          calization with a single hydrophone using multipath time
              [4] Waite A D. 实用声纳工程 [M]. 第三版. 北京: 电子工业出版           delays in the deep ocean[J]. The Journal of the Acoustical
                 社, 2004: 49–50.                                   Society of America, 2014, 136(2): 159–165.
              [5] 张揽月, 张明辉. 振动与声基础 [M]. 哈尔滨: 哈尔滨工程大学            [23] 孙梅, 周士弘, 李整林. 一种基于大深度矢量水听器的深海直
                 出版社, 2016: 239.                                   达波区近水面声源定位方法 [J]. 中国科学: 物理学 力学 天文
              [6] Urick R J. 水声原理 [M]. 洪申, 译. 哈尔滨: 哈尔滨船舶工          学, 2016, 46(9): 094309.
                 程学院出版社, 1990: 151.                                Sun Mei, Zhou Shihong, Li Zhenglin. Near-surface source
              [7] Worcester P F, Dzieciuch M A, Mercer J A, et al. The  localization in the direct-arrival zone in deep water using
                 North Pacific Acoustic Laboratory deep-water acoustic  a deep-located vector sensor[J]. Scientia Sinica Physica,
                 propagation experiments in the Philippine Sea[J]. The  Mechanica & Astronomica, 2016, 46(9): 094309.
                 Journal of the Acoustical Society of America, 2013, 134(4):  [24] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声
                 3359–3375.                                        传播特性及其应用 [J]. 物理学报, 2016, 65(9): 094302.
              [8] 段睿. 深海环境水声传播及声源定位方法研究 [D]. 西安: 西                 Sun Mei, Zhou Shihong, Li Zhenglin. Analysis of sound
                 北工业大学, 2016.                                      propagation in the direct-arrival zone in deep water with a
              [9] 杨坤德, 段睿, 李辉, 等. 水下声源定位理论与技术 [M]. 北京:             vector sensor and its application[J]. Acta Physica Sinica,
                 电子工业出版社, 2019.                                    2016, 65(9): 094302.
             [10] Duan R, Yang K D, Ma Y L. A reliable acoustic path:  [25] Lei Z X, Wang L, Li M B. Reconstruction of cross-
                 physical properties and a source localization method[J].  correlation function for underwater acoustical localiza-
                 Chinese Physics B, 2012, 21(12): 276–289.         tion[C]. IEEE Charleston OCEANS Conference, 2019:
             [11] Gaul R D, Knobles D P, Shooter J A, et al. Ambient noise  1–4.
                 analysis of deep-ocean measurements in the northeast pa-  [26] Duan R, Yang K D, Ma Y L, et al. A reliable acous-
                 cific[J]. IEEE Journal of Oceanic Engineering, 2007, 32(2):  tic path: physical properties and a source localization
                 497–512.                                          method[J]. Chinese Physics B, 2012, 21(12): 124301.
   7   8   9   10   11   12   13   14   15   16   17