Page 13 - 《应用声学》2022年第4期
P. 13

第 41 卷 第 4 期            沈同圣等: 可靠声路径传播特性及目标定位方法研究现状                                          511


             [27] 王梦圆, 李整林, 吴双林, 等. 深海大深度声传播特性及直达               [42] 王鸿吉, 杨日杰, 桂晨阳. 基于 RAP 的水雷引信作用范围计
                 声区水下声源距离估计 [J]. 声学学报, 2019, 44(5): 905–912.       算方法 [C]//2014 年水声对抗技术学术交流会论文集, 2014:
                 Wang Mengyuan, Li Zhenglin, Wu Shuanglin, et al. The  262–264.
                 characteristics of sound propagation in deep water and un-  [43] 王鸿吉, 韩建辉, 杨日杰. 基于 RAP 的水平线列阵时反定位
                 derwater sound source ranging in the direct zone[J]. Acta  研究 [J]. 压电与声光, 2015, 37(3): 456–459, 463.
                 Acustica, 2019, 44(5): 905–912.                   Wang Hongji, Han Jianhui, Yang Rijie.  Research on
             [28] 王梦圆, 李整林, 秦继兴, 等. 深海直达声区水下声源距离深                  time reversal positioning of horizontal line array based
                 度联合估计 [J]. 信号处理, 2019, 35(9): 1535–1543.          on RAP[J]. Piezoelectrics & Acoustooptics, 2015, 37(3):
                 Wang Mengyuan, Li Zhenglin, Qin Jixing, et al. Com-  456–459, 463.
                 bined estimation of range and depth for underwater source  [44] 王鸿吉, 韩建辉, 杨日杰. 基于 RAP 的垂直线列阵时反定位
                 in the direct zone in deep water[J]. Journal of Signal Pro-  研究 [J]. 传感器与微系统, 2015, 34(4): 56–58.
                 cessing, 2019, 35(9): 1535–1543.                  Wang Hongji, Han Jianhui, Yang Rijie. Research on time
             [29] Li H, Xu Z Z, Yang K D, et al. Use of multipath time-  reversal positioning of vertical line array based on RAP[J].
                 delay ratio for source depth estimation with a vertical line  Transducer and Microsystem Technologies, 2015, 34(4):
                 array in deep water[J]. The Journal of the Acoustical So-  56–58.
                                                                [45] 牛海强, 李整林, 王海斌, 等. 水声被动定位中的机器学习方
                 ciety of America, 2021, 149(1): 524–539.
             [30] McCargar R, Zurk L M. Depth-based signal separation  法研究进展综述 [J]. 信号处理, 2019, 35(9): 1450–1459.
                 with vertical line arrays in the deep ocean[J]. The Jour-  Niu Haiqiang, Li Zhenglin, Wang Haibin, et al. Overview
                 nal of the Acoustical Society of America, 2013, 133(4):  of machine learning methods in underwater source lo-
                                                                   calization[J]. Journal of Signal Processing, 2019, 35(9):
                 320–325.
             [31] Kniffin G P, Boyle J K, Zurk L M, et al. Performance  1450–1459.
                                                                [46] Steinberg B Z, Beran M J, Chin S H, et al.A neural net-
                 metrics for depth-based signal separation using deep ver-
                                                                   work approach to source localization[J]. The Journal of the
                 tical line arrays[J]. The Journal of the Acoustical Society
                                                                   Acoustical Society of America, 1991, 90(4): 2081–2090.
                 of America, 2016, 139(1): 418–425.
                                                                [47] Ozard J M, Zakarauskas P, Ko P. An artificial neural
             [32] Duan R, Yang K D, Li H, et al. A performance study
                                                                   network for range and depth discrimination in matched
                 of acoustic interference structure applications on source
                                                                   field processing[J]. The Journal of the Acoustical Society
                 depth estimation in deep water[J]. The Journal of the
                                                                   of America, 1991, 90(5): 2658–2663.
                 Acoustical Society of America, 2019, 145(2): 903–916.
                                                                [48] Niu H, Reeves E, Gerstoft P. Source localization in an
             [33] Qi Y B, Zhou S H, Liang Y Q, et al. Passive broadband
                                                                   ocean waveguide using supervised machine learning[J].
                 source depth estimation in the deep ocean using a single
                                                                   The Journal of the Acoustical Society of America, 2017,
                 vector sensor[J]. The Journal of the Acoustical Society of
                                                                   142(3): 1176–1188.
                 America, 2020, 148(1): 88.
                                                                [49] Niu H, Ozanich E, Gerstoft P. Ship localization in Santa
             [34] 翁晋宝, 李风华, 郭永刚. 典型深海声场频率 -距离干涉结构分
                                                                   Barbara Channel using machine learning classifiers[J]. The
                 析及实验研究 [J]. 声学学报, 2016, 41(3): 330–342.
                                                                   Journal of the Acoustical Society of America, 2017, 142(5):
                 Weng Jinbao, Li Fenghua, Guo Yonggang. The sound
                                                                   455–460.
                 field frequency-range interference patterns in deep wa-
                                                                [50] Wang Y, Peng H. Underwater acoustic source localization
                 ter theory and experiment[J]. Acta Acustica, 2016, 41(3):
                                                                   using generalized regression neural network[J]. The Jour-
                 330–342.
                                                                   nal of the Acoustical Society of America, 2018, 143(4):
             [35] 李浩琦, 王海斌, 张仁和. 一种声场干涉结构条纹增强方
                                                                   2321–2331.
                 法 [C]// 2013 中国西部声学学术交流会论文集 (下), 2013:
                                                                [51] Huang Z, Xu J, Gong Z, et al. Source localization using
                 7–10.                                             deep neural networks in a shallow water environment[J].
             [36] 唐浩, 王方勇. 浅海主动声呐混响干涉结构特性及增强方
                                                                   The Journal of the Acoustical Society of America, 2018,
                 法 [J]. 声学与电子工程, 2020(2): 1–5.                     143(5): 2922–2932.
             [37] Fizell R G, Wales S C. Source localization in range and  [52] Liu Y, Niu H, Li Z. Source ranging using ensemble con-
                 depth in an Arctic environment[J]. The Journal of the  volutional networks in the direct zone of deep water[J].
                 Acoustical Society of America, 1985, 78(S1): 57–58.  Chinese Physics Letters, 2019, 36(4): 47–50.
             [38] Lei Z, Yang K D, Ma Y L. Passive localization in the  [53] Liu W X, Yang Y X, Xu M Q, et al. Source localization
                 deep ocean based on cross-correlation function match-  in the deep ocean using a convolutional neural network[J].
                 ing[J]. The Journal of the Acoustical Society of America,  The Journal of the Acoustical Society of America, 2020,
                 2016, 139(6): 196–201.                            147(4): 314.
             [39] Yang K D, Xu L, Yang Q, et al. Striation-based source  [54] 张仁和. 水声物理、信号处理与海洋环境紧密结合是水声技术
                 depth estimation with a vertical linearray in the deep  发展的趋势 [J]. 应用声学, 2006, 25(6): 325–327.
                 ocean[J]. The Journal of the Acoustical Society of Amer-  Zhang Renhe.  The development trend of underwater
                 ica, 2018, 143(1): 8–12.                          acoustic technology is osculatory combination of under-
             [40] 惠俊英, 生雪莉. 水下声信道 [M]. 哈尔滨: 哈尔滨工程大学出               water acoustic physics, signal processing and ocean en-
                 版社, 2011: 43.                                     vironment[J]. Journal of Applied Acoustics, 2006, 25(6):
             [41] 刘雄厚, 孙超, 杨益新, 等. 深海水下目标大深度主动探测性                  325–327.
                 能评估 [C]//中国声学学会水声学分会 2019 年学术会议论文              [55] 李整林, 杨益新, 秦继兴, 等. 深海声学与探测技术 [M]. 上海
                 集, 2019: 451–453.                                 科学技术出版社, 2020: 266–267.
   8   9   10   11   12   13   14   15   16   17   18