Page 50 - 《应用声学》2022年第5期
P. 50

726                                                                                  2022 年 9 月


                                                                 [9] Wan X, Tse P W, Xu G H, et al. Analytical and nu-
                                                                   merical studies of approximate phase velocity matching
                            参 考     文   献
                                                                   based nonlinear S0 mode Lamb waves for the detection of
                                                                   evenly distributed microstructural changes[J]. Smart Ma-
              [1] Deng M. Characterization of surface properties of a solid  terials and Structures, 2016, 25(4): 045023.
                 plate using nonlinear Lamb wave approach[J]. Ultrasonics,  [10] Hu Z, An Z, Kong Y, et al. The nonlinear S0 Lamb mode
                 2006, 44: 1157–1162.                              in a plate with a linearly-varying thickness[J]. Ultrasonics,
              [2] Bermes C, Kim J Y, Qu J, et al. Nonlinear Lamb waves  2019, 94: 102–108.
                 for the detection of material nonlinearity[J]. Mechanical  [11] Wilcox P D, Lowe M J, Cawley P. Mode and transducer
                 Systems and Signal Processing, 2008, 22(3): 638–646.  selection for long range Lamb wave inspection[J]. Jour-
              [3] Li W, Cho Y, Achenbach J D. Detection of thermal fa-  nal of Intelligent Material Systems and Structures, 2001,
                 tigue in composites by second harmonic Lamb waves[J].  12(8): 553–565.
                 Smart Materials and Structures, 2012, 21(8): 085019.  [12] Simonetti F. Lamb wave propagation in elastic plates
              [4] Zhou J, Xiao L, Qu W, et al. Nonlinear Lamb wave based  coated with viscoelastic materials[J]. The Journal of the
                 DORT method for detection of fatigue cracks[J]. NDT &  Acoustical Society of America, 2004, 115(5): 2041–2053.
                 E International, 2017, 92: 22–29.              [13] Kanda K, Sugiura T. Internally resonant guided waves
              [5] de Lima W J N, Hamilton M F. Finite-amplitude waves in  arising from quadratic classical nonlinearities with damp-
                 isotropic elastic plates[J]. Journal of Sound and Vibration,  ing[J]. International Journal of Solids and Structures,
                 2003, 265(4): 819–839.                            2021, 216: 250–257.
              [6] Deng M. Analysis of second-harmonic generation of Lamb  [14] Norris A N. An inequality for longitudinal and transverse
                 modes using a modal analysis approach[J]. Journal of Ap-  wave attenuation coefficients[J]. The Journal of the Acous-
                 plied Physics, 2003, 94(6): 4152–4159.            tical Society of America, 2017, 141(1): 475–479.
              [7] Deng M, Xiang Y X, Liu L B. Time-domain second-  [15] Renaud G, Talmant M, Marrelec G. Microstrain-level
                 harmonic generation of primary Lamb-wave propagation  measurement of third-order elastic constants applying
                 in an elastic plate[J]. Chinese Physics Letters, 2011, 28(7):  dynamic acousto-elastic testing[J]. Journal of Applied
                 074301.                                           Physics, 2016, 120(13): 135102.
              [8] Zuo P, Zhou Y, Fan Z. Numerical and experimental in-  [16] Feng F, Shen J, Lin S. Scattering matrices of Lamb waves
                 vestigation of nonlinear ultrasonic Lamb waves at low fre-  at irregular surface and void defects[J]. Ultrasonics, 2012,
                 quency[J]. Applied Physics Letters, 2016, 109(2): 021902.  52(6): 760–766.
   45   46   47   48   49   50   51   52   53   54   55