Page 58 - 《应用声学》2022年第5期
P. 58

734                                                                                  2022 年 9 月


                 (3) 裂纹表面粗糙度对检测结果具有一定影响。                        [10] Xu C, Xie J, Zhang W, et al. Experimental investigation
             裂纹面间的动摩擦系数越大,两裂纹面之间相对运                                on the detection of multiple surface cracks using vibroth-
                                                                   ermography with a low-power piezoceramic actuator[J].
             动时的摩擦力越大,因摩擦生成的热量就越多。
                                                                   Sensors(Basel), 2017, 17(12): 2705.
                 (4) 在一定范围内,裂纹开口宽度越小,裂纹面                        [11] Jia Y, Tang L, Ming P, et al. Ultrasound-excited thermog-
             之间的法向接触压力越大且更容易接触发生相对                                 raphy for detecting microcracks in concrete materials[J].
             运动,摩擦生热效果越好。                                          NDT & E International, 2019, 101: 62–71.
                                                                [12] Dong L, Wang B, Wang H, et al. Effects of crack sur-
                                                                   face roughness on crack heat generation characteristics of
                                                                   ultrasonic infrared thermography[J]. Infrared Physics &
                            参 考     文   献
                                                                   Technology, 2020: 103262.
                                                                [13] 习小文, 苏清风, 袁雅妮, 等. 超声红外热成像技术在航空发动
              [1] 莫淑华, 于久灏, 王佳杰. 工程材料力学性能 [M]. 北京: 北京              机叶片裂纹的对比研究 [J]. 红外技术, 2021, 43(2): 186–191.
                 大学出版社, 2013: 133–164.                             Xi Xiaowen, Su Qingfeng, Yuan Yanni, et al. Compara-
              [2] 张俊芝. 服役工程结构可靠性理论及其应用 [M]. 北京: 中国                 tive study of using ultrasonic infrared thermography for
                 水利水电出版社, 2007: 1–12.                              detecting aeroengine blade cracks[J]. Infrared Technology,
              [3] 周志新. 机械裂纹无损检测方法综述 [J]. 机电工程, 2017,               2021, 43(2): 186–191.
                 34(10): 1138–1143.                             [14] Renshaw J, Chen J C, Holland S D, et al. The sources
                 Zhou Zhixin. Overview of NDT methods for mechanical  of heat generation in vibrothermography[J]. NDT & E In-
                 cracks[J]. Journal of Mechanical & Electrical Engineering,  ternational, 2011, 44(8): 736–739.
                 2017, 34(10): 1138–1143.                       [15] Renshaw J, Holland S D, Thompson R B. Measurement
              [4] 郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研                  of crack opening stresses and crack closure stress pro-
                 究现状与进展 [J]. 无损检测, 2016, 38(4): 58–66.             files from heat generation in vibrating cracks[J]. Applied
                 Guo Wei, Dong Lihong, Xu Binshi, et al. Research sta-  Physics Letters, 2008, 93(8): 081914.
                 tus and progress of active infrared thermographic nonde-  [16] Rizi A S, Hedayatrasa S, Maldague X, et al. FEM mod-
                 structive testing[J]. Nondestructive Testing, 2016, 38(4):  eling of ultrasonic vibrothermography of a damaged plate
                 58–66.                                            and qualitative study of heating mechanisms[J]. Infrared
              [5] Henneke E G, Reifsnider K L, Stinchcomb W W. Ther-  Physics & Technology, 2013, 61: 101–110.
                 mography—An NDI method for damage detection[J].  [17] 向明, 董丽虹, 王海斗, 等. 金属结构疲劳裂纹超声红外无损
                 JOM, 1979, 31(9): 11–15.                          检测研究现状 [J]. 激光与红外, 2018, 48(6): 667–674.
              [6] Solodov I, Bai J, Bekgulyan S, et al. A local defect reso-  Xiang Ming, Dong Lihong, Wang Handou, et al. Research
                 nance to enhance acoustic wave-defect interaction in ultra-  progress on ultrasonic infrared thermography nondestruc-
                 sonic nondestructive evaluation[J]. Applied Physics Let-  tive testing of fatigue cracks in metal[J]. Laser & Infrared,
                 ters, 2011, 99(21): 211911.                       2018, 48(6): 667–674.
              [7] Cavallone C, Colom M, Mendioroz A, et al. Sizing the  [18] 李赞. 金属结构件裂纹超声红外热像检测及其激励参数影响
                 length of surface breaking cracks using vibrothermogra-  规律研究 [D]. 湘潭: 湖南科技大学, 2016.
                 phy[J]. NDT & E International, 2020, 112: 102250.  [19] 丁超. 碳纤维材料红外热波无损检测技术研究 [D]. 长春: 中
              [8] Seifoori S, Izadi R, Liaghat G H, et al. An experimen-  国科学院长春光学精密机械与物理研究所, 2021.
                 tal study on damage intensity in composite plates sub-  [20] Doshvarpassand S, Wu C, Wang X. An overview of cor-
                 jected to low-velocity impacts[J]. Polymer Testing, 2021,  rosion defect characterization using active infrared ther-
                 93: 106887.                                       mography[J]. Infrared Physics & Technology, 2019, 96:
              [9] 张淑仪. 超声红外热像技术及其在无损评价中的应用 [J]. 应                  366–389.
                 用声学, 2004, 23(5): 1–6.                         [21] Kumar S S, Kumar M R, Sudheendra H N, et al.
                 Zhang Shuyi. Ultrasonic infrared thermography and its  Pulse phase thermographic non-destructive evaluation of
                 applications in nondestructive evaluation[J]. Journal of  composite aircraft structures[J]. Insight-Non-Destructive
                 Applied Acoustics, 2004, 23(5): 1–6.              Testing and Condition Monitoring, 2011, 53(6): 312–315.
   53   54   55   56   57   58   59   60   61   62   63