Page 58 - 《应用声学》2022年第5期
P. 58
734 2022 年 9 月
(3) 裂纹表面粗糙度对检测结果具有一定影响。 [10] Xu C, Xie J, Zhang W, et al. Experimental investigation
裂纹面间的动摩擦系数越大,两裂纹面之间相对运 on the detection of multiple surface cracks using vibroth-
ermography with a low-power piezoceramic actuator[J].
动时的摩擦力越大,因摩擦生成的热量就越多。
Sensors(Basel), 2017, 17(12): 2705.
(4) 在一定范围内,裂纹开口宽度越小,裂纹面 [11] Jia Y, Tang L, Ming P, et al. Ultrasound-excited thermog-
之间的法向接触压力越大且更容易接触发生相对 raphy for detecting microcracks in concrete materials[J].
运动,摩擦生热效果越好。 NDT & E International, 2019, 101: 62–71.
[12] Dong L, Wang B, Wang H, et al. Effects of crack sur-
face roughness on crack heat generation characteristics of
ultrasonic infrared thermography[J]. Infrared Physics &
参 考 文 献
Technology, 2020: 103262.
[13] 习小文, 苏清风, 袁雅妮, 等. 超声红外热成像技术在航空发动
[1] 莫淑华, 于久灏, 王佳杰. 工程材料力学性能 [M]. 北京: 北京 机叶片裂纹的对比研究 [J]. 红外技术, 2021, 43(2): 186–191.
大学出版社, 2013: 133–164. Xi Xiaowen, Su Qingfeng, Yuan Yanni, et al. Compara-
[2] 张俊芝. 服役工程结构可靠性理论及其应用 [M]. 北京: 中国 tive study of using ultrasonic infrared thermography for
水利水电出版社, 2007: 1–12. detecting aeroengine blade cracks[J]. Infrared Technology,
[3] 周志新. 机械裂纹无损检测方法综述 [J]. 机电工程, 2017, 2021, 43(2): 186–191.
34(10): 1138–1143. [14] Renshaw J, Chen J C, Holland S D, et al. The sources
Zhou Zhixin. Overview of NDT methods for mechanical of heat generation in vibrothermography[J]. NDT & E In-
cracks[J]. Journal of Mechanical & Electrical Engineering, ternational, 2011, 44(8): 736–739.
2017, 34(10): 1138–1143. [15] Renshaw J, Holland S D, Thompson R B. Measurement
[4] 郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研 of crack opening stresses and crack closure stress pro-
究现状与进展 [J]. 无损检测, 2016, 38(4): 58–66. files from heat generation in vibrating cracks[J]. Applied
Guo Wei, Dong Lihong, Xu Binshi, et al. Research sta- Physics Letters, 2008, 93(8): 081914.
tus and progress of active infrared thermographic nonde- [16] Rizi A S, Hedayatrasa S, Maldague X, et al. FEM mod-
structive testing[J]. Nondestructive Testing, 2016, 38(4): eling of ultrasonic vibrothermography of a damaged plate
58–66. and qualitative study of heating mechanisms[J]. Infrared
[5] Henneke E G, Reifsnider K L, Stinchcomb W W. Ther- Physics & Technology, 2013, 61: 101–110.
mography—An NDI method for damage detection[J]. [17] 向明, 董丽虹, 王海斗, 等. 金属结构疲劳裂纹超声红外无损
JOM, 1979, 31(9): 11–15. 检测研究现状 [J]. 激光与红外, 2018, 48(6): 667–674.
[6] Solodov I, Bai J, Bekgulyan S, et al. A local defect reso- Xiang Ming, Dong Lihong, Wang Handou, et al. Research
nance to enhance acoustic wave-defect interaction in ultra- progress on ultrasonic infrared thermography nondestruc-
sonic nondestructive evaluation[J]. Applied Physics Let- tive testing of fatigue cracks in metal[J]. Laser & Infrared,
ters, 2011, 99(21): 211911. 2018, 48(6): 667–674.
[7] Cavallone C, Colom M, Mendioroz A, et al. Sizing the [18] 李赞. 金属结构件裂纹超声红外热像检测及其激励参数影响
length of surface breaking cracks using vibrothermogra- 规律研究 [D]. 湘潭: 湖南科技大学, 2016.
phy[J]. NDT & E International, 2020, 112: 102250. [19] 丁超. 碳纤维材料红外热波无损检测技术研究 [D]. 长春: 中
[8] Seifoori S, Izadi R, Liaghat G H, et al. An experimen- 国科学院长春光学精密机械与物理研究所, 2021.
tal study on damage intensity in composite plates sub- [20] Doshvarpassand S, Wu C, Wang X. An overview of cor-
jected to low-velocity impacts[J]. Polymer Testing, 2021, rosion defect characterization using active infrared ther-
93: 106887. mography[J]. Infrared Physics & Technology, 2019, 96:
[9] 张淑仪. 超声红外热像技术及其在无损评价中的应用 [J]. 应 366–389.
用声学, 2004, 23(5): 1–6. [21] Kumar S S, Kumar M R, Sudheendra H N, et al.
Zhang Shuyi. Ultrasonic infrared thermography and its Pulse phase thermographic non-destructive evaluation of
applications in nondestructive evaluation[J]. Journal of composite aircraft structures[J]. Insight-Non-Destructive
Applied Acoustics, 2004, 23(5): 1–6. Testing and Condition Monitoring, 2011, 53(6): 312–315.