Page 28 - 《应用声学》2022年第6期
P. 28

874                                                                                 2022 年 11 月


                           表 6   最大稳态增益                          [8] 江虹, 周上清, 刘鹏辉, 等. 一种基于对数函数的改进变步长
                     Table 6 Maximum stable gain                   LMS 算法研究 [J]. 科技风, 2020(19): 51–52, 57.
                                                                   Jiang Hong, Zhou Shangqing, Liu Penghui, et al. Study on
                                                                   an improved step size factor of variable LMS algorithm[J].
               算法    无反馈抑制     LMS  NLMS PNLMS    本论文算法
                                                                   Technology Wind, 2020(19): 51–52, 57.
             MSG/dB    31.36   39.91  48.03  48.88  51.87        [9] Duttweiler D L. Proportionate normalized least mean-
                                                                   squared adaptation in echo cancelers[J]. IEEE Trans-
             4 结论                                                  actions on Speech and Audio Processing, 2000, 8(5):
                                                                   508–518.
                                                                [10] 王侠, 梁瑞宇, 王青云, 等. 应用于助听器反馈抑制系统的变
                 本文针对助听器反馈抑制领域提出了一种基
                                                                   步长归一化子带自适应滤波算法 [J]. 东南大学学报 (自然科学
             于信噪比的自适应滤波算法,以解决语声信号的相                                版), 2015, 45(3): 417–422.
             关性较大,容易使自适应滤波器出现较大失调的问                                Wang Xia, Liang Ruiyu, Wang Qingyun, et al. Variable
             题。当信噪比高时,将自适应滤波算法步长控制在                                step size normalized subband adaptive filter algorithm for
                                                                   acoustic feedback cancellation in hearing aids[J]. Journal
             一个较小值,减少算法失调;当信噪比低时,将自适
                                                                   of Southeast University(Natural Science Edition), 2015,
             应滤波算法步长控制在一个较大值,加快收敛速度。                               45(3): 417–422.
             通过实验仿真,本文提出的基于信噪比的 NLMS 算                          [11] 章坚武, 余皓, 章谦骅. 改进的双曲正切函数的变步长 LMS
                                                                   算法 [J]. 通信学报, 2020, 41(11): 116–123.
             法较传统的 NLMS 算法在性能上分别降低约 1 dB
                                                                   Zhang Jianwu, Yu Hao, Zhang Qianhua. Improved vari-
             的平均稳态失调量、2 dB 的稳态失调范围,提高了                             able step-size LMS algorithm based on hyperbolic tangent
             4 dB 的最大稳态增益,同时具有更快的收敛速度,                             function[J]. Journal on Communications, 2020, 41(11):
             实现了传统NLMS算法的优化。对比本文所提出的                               116–123.
                                                                [12] Hellgren J. Analysis of feedback cancellation in hearing
             算法与其他参考算法,验证了本文提出的优化算法
                                                                   aids with filtered-X LMS and the direct method of closed
             具有较低的失调量、较快的收敛速度,同时能够达                                loop identification[J]. IEEE Transactions on Speech and
             到较高的增益,均优于其他3种算法。                                     Audio Processing, 2002, 10(2): 119–131.
                                                                [13] 孙志文. 基于自适应滤波的声反馈抑制算法研究与实现 [D].
                                                                   成都: 电子科技大学, 2019.
                                                                [14] 高鹰, 谢胜利. 一种变步长 LMS 自适应滤波算法及分析
                            参 考     文   献
                                                                   [C]//第十九届中国控制会议论文集 (一), 2000: 162–166.
                                                                [15] Khoubrouy S A, Panahi I M S. An efficient delay less
              [1] 凃磊, 任杰, 赵坚, 等. 助听器双重反馈抑制算法中的参数效应                 sub band filtering for adaptive feedback compensation in
                 研究 [J]. 中国听力语言康复科学杂志, 2020, 18(5): 383–386.       hearing aid[J]. Journal of Signal Processing Systems, 2016,
                 Tu Lei, Ren Jie, Zhao Jian, et al. The parameter effect of  83(3): 401–409.
                 the Dual-Mode feedback canellation algorithm for hearing  [16] Morgan D R, Hall J L, Benesty J. Investigation of sev-
                 aids[J]. Chinese Scientific Journal of Hearing and Speech  eral types of nonlinearities for use in stereo acoustic echo
                 Rehabilitation, 2020, 18(5): 383–386.             cancellation[J]. Speech & Audio Processing IEEE Trans-
              [2] Patronis E T. Acoustic feedback detector and automatic  actions on, 2001, 9(6): 686–696.
                 gain control: U.S.A., US4079199[P]. 1978–03–14.  [17] Joncour Y, Sugiyama A. A stereo echo canceller with
              [3] Schroeder M R. Improvement of acoustic feedback stabil-  pre-processing for correct echo-path identification[C]. Pro-
                 ity in public address systems[J]. The Journal of the Acous-  ceedings of ICASSP, Seattle, 1998: 3689–3692.
                 tical Society of America, 1959, 31(6): 851–852.  [18] Haykin S. Adaptive filter theory[M]. 5th Edition. Canada:
              [4] Kawamura A, Matsumoto M, Serikawa M, et al. Sound  Publishing House of Electronics Industry, 2014.
                 amplifying apparatus with automatic howling-suppressing  [19] Martin R. Noise power spectral density estimation based
                 function: Japan, EP0599450[P]. 2001–11–21.        on optimal smoothing and minimum statistics[J]. IEEE
              [5] Kates J M. Feedback cancellation in hearing aids: results  Transactions on Speech and Audio Processing, 2001, 9(5):
                 from a computer simulation[J]. IEEE Transactions on Sig-  504–512.
                 nal Processing, 1991, 39(3): 553–562.          [20] Ni J, Li F. A variable step size matrix normalized subband
              [6] Slock D. On the convergence behavior of the LMS and  adaptive filter[J]. IEEE Transactions on Audio Speech &
                 the normalized LMS algorithms[J]. IEEE Transactions on  Language Processing, 2010, 18(6): 1290–1299.
                 Signal Processing, 1993, 41(9): 2811–2825.     [21] Spriet A, Proudler I, Moonen M, et al. Adaptive feedback
              [7] Anand A, Kar A, Swamy M N S. An improved CLMS algo-  cancellation in hearing aids with linear prediction of the
                 rithm for feedback cancellation in hearing aids[J]. Applied  desired signal[J]. IEEE Transactions on Signal Processing,
                 Acoustics, 2018, 129: 417–426.                    2005, 53(10): 3749–3763.
   23   24   25   26   27   28   29   30   31   32   33