Page 174 - 《应用声学》2023年第2期
P. 174
362 2023 年 3 月
R 10=R 20=10 µm,Ḥӭᮠf=3.34T10 5 Hz fields[J]. Journal of Physical Chemistry B, 2010, 114(34):
R 10 =R 20 =10 µm,Ḥԥᮠf=3.34T10 5 Hz
R 10 =20 µm,Ḥԥᮠf=3.34f105Hz֗f=1.61T10 5 Hz 11010–11016.
R 20 =10 µm,Ḥԥᮠf=3.34f105Hz֗f=1.61T10 5 Hz
[5] 杨日福, 丘泰球, 郭娟. 超临界 CO 2 流体中空化泡共振频率
6
的分析 [J]. 华南理工大学学报 (自然科学版), 2008, 36(7):
5 32–35, 41.
Yang Rifu, Qiu Taiqiu, Guo Juan. Analysis of reso-
ພए T/(10 5 K) 3 CO 2 [J]. Journal of South China University of Technol-
4
nant frequency of cavitation bubbles in super critical fluid
ogy(Natural Science Edition), 2008, 36(7): 32–35, 41.
[6] Doinikov A A, Zavtrak S T. On the ”bubble grapes” in-
2
duced by a sound field[J]. The Journal of the Acoustical
1 Society of America, 1998, 99(6): 3849–3850.
[7] Oguz H N, Prosperetti A. The natural frequency of os-
0
0 1 2 3 4 5 6 7 8 9 cillation of gas bubbles in tubes[J]. The Journal of the
t/(10 -5 s) Acoustical Society of America, 1998, 103(6): 3301–3308.
[8] Holzfuss J, Rüggeberg M, Mettin R. Boosting Sono-
图 8 气泡温度随时间变化图 luminescence[J]. Physical Review Letters, 1998, 81(9):
Fig. 8 Variation with time of temperature of bubble 1961–1964.
[9] Gugulothu S K, Kumar P, Deekshith P. Exploring cav-
itating phenomenon with and without ultrasonic trans-
3 结论 ducer[J]. Procedia Engineering, 2012, 38(1): 154–164.
[10] Schoellhammer C M, Srinivasan S, Barman R, et al. Ap-
本文通过龙格 -库塔法求解方程组,模拟双泡 plicability and safety of dual-frequency ultrasonic treat-
模型中气泡半径、气泡动能、气泡温度随时间的变 ment for the transdermal delivery of drugs[J]. Journal of
Controlled Release, 2015, 202(1): 93–100.
化情况,研究双泡初始半径对自然共振频率的影响。
[11] Schoellhammer C M, Polat B E, Mendenhall J, et al.
结果表明:在其他条件相同情况下,在1 ∼ 10 µm范 Rapid skin permeabilization by the simultaneous applica-
围内,初始半径对自然共振频率的影响远远大于双 tion of dual-frequency, high-intensity ultrasound[J]. Jour-
泡间的相对距离;气泡初始半径不同时,驱动频率取 nal of Controlled Release, 2012, 163(2): 154–160.
[12] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究 [J]. 物
值在两气泡的自然共振的频率中间时,超声空化效 理学报, 2009, 58(11): 7797–7801.
果最佳;双频超声取气泡自然共振频率时远远优于 Zhang Pengli, Lin Shuyu. Two-bubble interaction un-
单频超声驱动,在初始半径不同时,双频超声分别 der the sound field[J]. Chinese Journal of Physics, 2009,
58(11): 7797–7801.
取双气泡的自然共振频率,超声空化效果有飞跃的
[13] Avvaru B, Pandit A B. Oscillating bubble concentration
提升。 and its size distribution using acoustic emission spectra[J].
Ultrasonics Sonochemistry, 2009, 16(1): 105–115.
[14] 田红. 超声波在城市剩余活性污泥中的传输特性的模拟及实
参 考 文 献 验研究 [D]. 重庆: 重庆大学, 2010.
[15] Prosperetti A. Thermal effects and damping mechanisms
in the forced radial oscillations of gas bubbles in liquids[J].
[1] 莫润阳, 林书玉, 王成会. 超声空化的研究方法及进展 [J]. 应 The Journal of the Acoustical Society of America, 1977,
用声学, 2009, 28(5): 389–400. 61(1): 17–27.
Mo Runyang, Lin Shuyu, Wang Chenghui. Methods of [16] Morioka M. Theory of natural frequencies of two pulsat-
study on sound cavitation[J]. Journal of Applied Acous- ing bubbles in infinite liquid[J]. Journal of Nuclear Science
tics, 2009, 28(5): 389–400. and Technology, 1974, 11(12): 554–560.
[2] Shima A. Studies on bubble dynamics[J]. Shock Waves, [17] 沈阳. 超声空化的理论研究及影响因素的模拟分析 [D]. 沈阳:
1997, 7(1): 33–42. 东北大学, 2014.
[3] 李永春, 祝锡晶, 郭策, 等. 超声珩磨区实际气体的单空泡动 [18] 冯若, 李化茂. 声化学及其应用 [M]. 安徽: 安徽科学技术出版
力学分析 [J]. 应用声学, 2014, 33(6): 528–533. 社, 1992.
Li Yongchun, Zhu Xijing, Guo Ce, et al. Single bubble dy- [19] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究 [J]. 物
namics analysis of the real gas in ultrasonic honing area[J]. 理学报, 2018, 67(3): 231–238.
Journal of Applied Acoustics, 2014, 33(6): 528–533. Wang Dexing, Naranmandula. Theoretical study of cou-
[4] Brotchie A, Grieser F, Ashokkumar M. Characteriza- pling double-bubbles ultrasonic cavitation characteris-
tion of acoustic cavitation bubbles in different sound tics[J]. Chinese Journal of Physics, 2018, 67(3): 231–238.