Page 174 - 《应用声学》2023年第2期
P. 174

362                                                                                  2023 年 3 月


                        R 10=R 20=10 µm,Ḥӭᮠf=3.34T10 5  Hz         fields[J]. Journal of Physical Chemistry B, 2010, 114(34):
                        R 10 =R 20 =10 µm,Ḥԥᮠf=3.34T10 5  Hz
                        R 10 =20 µm,Ḥԥᮠf=3.34f105Hz֗f=1.61T10 5  Hz  11010–11016.
                        R 20 =10 µm,Ḥԥᮠf=3.34f105Hz֗f=1.61T10 5  Hz
                                                                 [5] 杨日福, 丘泰球, 郭娟. 超临界 CO 2 流体中空化泡共振频率
                 6
                                                                   的分析 [J]. 华南理工大学学报 (自然科学版), 2008, 36(7):
                 5                                                 32–35, 41.
                                                                   Yang Rifu, Qiu Taiqiu, Guo Juan.  Analysis of reso-
                ພए T/(10 5  K)  3                                  CO 2 [J]. Journal of South China University of Technol-
                 4
                                                                   nant frequency of cavitation bubbles in super critical fluid
                                                                   ogy(Natural Science Edition), 2008, 36(7): 32–35, 41.
                                                                 [6] Doinikov A A, Zavtrak S T. On the ”bubble grapes” in-
                 2
                                                                   duced by a sound field[J]. The Journal of the Acoustical
                 1                                                 Society of America, 1998, 99(6): 3849–3850.
                                                                 [7] Oguz H N, Prosperetti A. The natural frequency of os-
                 0
                  0   1    2   3   4   5   6   7    8   9          cillation of gas bubbles in tubes[J]. The Journal of the
                                  t/(10 -5  s)                     Acoustical Society of America, 1998, 103(6): 3301–3308.
                                                                 [8] Holzfuss J, Rüggeberg M, Mettin R. Boosting Sono-
                        图 8  气泡温度随时间变化图                            luminescence[J]. Physical Review Letters, 1998, 81(9):
              Fig. 8 Variation with time of temperature of bubble  1961–1964.
                                                                 [9] Gugulothu S K, Kumar P, Deekshith P. Exploring cav-
                                                                   itating phenomenon with and without ultrasonic trans-
             3 结论                                                  ducer[J]. Procedia Engineering, 2012, 38(1): 154–164.
                                                                [10] Schoellhammer C M, Srinivasan S, Barman R, et al. Ap-
                 本文通过龙格 -库塔法求解方程组,模拟双泡                             plicability and safety of dual-frequency ultrasonic treat-
             模型中气泡半径、气泡动能、气泡温度随时间的变                                ment for the transdermal delivery of drugs[J]. Journal of
                                                                   Controlled Release, 2015, 202(1): 93–100.
             化情况,研究双泡初始半径对自然共振频率的影响。
                                                                [11] Schoellhammer C M, Polat B E, Mendenhall J, et al.
             结果表明:在其他条件相同情况下,在1 ∼ 10 µm范                           Rapid skin permeabilization by the simultaneous applica-
             围内,初始半径对自然共振频率的影响远远大于双                                tion of dual-frequency, high-intensity ultrasound[J]. Jour-
             泡间的相对距离;气泡初始半径不同时,驱动频率取                               nal of Controlled Release, 2012, 163(2): 154–160.
                                                                [12] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究 [J]. 物
             值在两气泡的自然共振的频率中间时,超声空化效                                理学报, 2009, 58(11): 7797–7801.
             果最佳;双频超声取气泡自然共振频率时远远优于                                Zhang Pengli, Lin Shuyu.  Two-bubble interaction un-
             单频超声驱动,在初始半径不同时,双频超声分别                                der the sound field[J]. Chinese Journal of Physics, 2009,
                                                                   58(11): 7797–7801.
             取双气泡的自然共振频率,超声空化效果有飞跃的
                                                                [13] Avvaru B, Pandit A B. Oscillating bubble concentration
             提升。                                                   and its size distribution using acoustic emission spectra[J].
                                                                   Ultrasonics Sonochemistry, 2009, 16(1): 105–115.
                                                                [14] 田红. 超声波在城市剩余活性污泥中的传输特性的模拟及实
                            参 考     文   献                          验研究 [D]. 重庆: 重庆大学, 2010.
                                                                [15] Prosperetti A. Thermal effects and damping mechanisms
                                                                   in the forced radial oscillations of gas bubbles in liquids[J].
              [1] 莫润阳, 林书玉, 王成会. 超声空化的研究方法及进展 [J]. 应               The Journal of the Acoustical Society of America, 1977,
                 用声学, 2009, 28(5): 389–400.                        61(1): 17–27.
                 Mo Runyang, Lin Shuyu, Wang Chenghui. Methods of  [16] Morioka M. Theory of natural frequencies of two pulsat-
                 study on sound cavitation[J]. Journal of Applied Acous-  ing bubbles in infinite liquid[J]. Journal of Nuclear Science
                 tics, 2009, 28(5): 389–400.                       and Technology, 1974, 11(12): 554–560.
              [2] Shima A. Studies on bubble dynamics[J]. Shock Waves,  [17] 沈阳. 超声空化的理论研究及影响因素的模拟分析 [D]. 沈阳:
                 1997, 7(1): 33–42.                                东北大学, 2014.
              [3] 李永春, 祝锡晶, 郭策, 等. 超声珩磨区实际气体的单空泡动               [18] 冯若, 李化茂. 声化学及其应用 [M]. 安徽: 安徽科学技术出版
                 力学分析 [J]. 应用声学, 2014, 33(6): 528–533.             社, 1992.
                 Li Yongchun, Zhu Xijing, Guo Ce, et al. Single bubble dy-  [19] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究 [J]. 物
                 namics analysis of the real gas in ultrasonic honing area[J].  理学报, 2018, 67(3): 231–238.
                 Journal of Applied Acoustics, 2014, 33(6): 528–533.  Wang Dexing, Naranmandula. Theoretical study of cou-
              [4] Brotchie A, Grieser F, Ashokkumar M. Characteriza-  pling double-bubbles ultrasonic cavitation characteris-
                 tion of acoustic cavitation bubbles in different sound  tics[J]. Chinese Journal of Physics, 2018, 67(3): 231–238.
   169   170   171   172   173   174   175   176   177   178   179