Page 124 - 《应用声学》2023年第6期
P. 124
1234 2023 年 11 月
个数、飞镖硬质节点圆半径与锥角的方式控制非轴 metamaterial structure[J]. Journal of Applied Physics,
对称程度,并给出了相应的影响因素与单胞能带结 2014, 116(13): 133503.
[10] Xiao Q, Wang L, Wu T, et al. Research on lay-
构的变化关系,得出了以下结论:
ered design of ring-shaped acoustic cloaking using bi-
(1) 相比于传统轴对称五模单胞,非对称单胞 modemetamaterial[J]. Applied Mechanics and Materials,
具有更优异的低频能带结构。胞元结构对称性越弱, 2014, 3634(687–691): 4399–4404.
能带结构中第一带隙低频性与带宽性越好。 [11] Zhao A, Zhao Z, Zhang X, et al. Design and experimental
verification of a water-like pentamode material[J]. Applied
(2) 五模单胞软质材料填充区域中引入较高杨 Physics Letters, 2017, 110(1): 011907.
氏模量的掺杂材料,不仅可以增大单模区域的宽度, [12] 张向东, 陈虹, 王磊, 等. 圆柱形分层五模材料声学隐身衣的
而且可以提升单胞的品质因数,改善单胞在单模区 理论与数值分析 [J]. 物理学报, 2015, 64(13): 134303.
Zhang Xiangdong, Chen Hong, Wang Lei, et al. Theoret-
域内的声波解耦能力。
ical and numerical analysis of cylindrical layered penta-
(3) 选择具有更高不对称性的硬质基元结构可 mode material acoustic invisibility cloak[J]. Acta Physica
以显著提升能带中第一带隙的低频性与带宽性,但 Sinica, 2015, 64(13): 134303.
硬质结构对称性降低时,五模材料结构的五模特性 [13] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨 [J].
物理学报, 2015, 64(15): 269–276.
会随之减弱。在低频声波调控的五模材料单胞设计 Liu Jiao, Hou Zhilin, Fu Xiujun. Mechanism of local
上,可以选择非对称程度适当的硬质材料结构并掺 resonance acoustic metamaterials[J]. Acta Physica Sinica,
杂较高模量的软质材料,以获得更高品质因数与优 2015, 64(15): 269–276.
[14] 温激鸿, 韩小云, 王刚, 等. 声子晶体研究概述 [J]. 功能材料,
异声波调控能力的五模单胞。
2003, 34(4): 364–367.
Wen Jihong, Han Xiaoyun, Wang Gang, et al. Overview
参 考 文 献 of phononic crystal research[J]. Jorunal of Functional Ma-
terials, 2003, 34(4): 364–367.
[15] Wu F, Hou Z, Liu Z, et al. Point defect states in two-
[1] Milton G W, Cherkaev A V. Which elasticity tensors are
dimensional phononic crystals[J]. Physics Letters A, 2001,
realizable?[J]. Journal of Engineering Materials and Tech-
292(3): 198–202.
nology, 1995, 117(4): 483–493.
[16] Hou Z, Wu F, Liu Y. Acoustic wave propagating in
[2] Kadic M, Bückmann T, Stenger N, et al. On the practica-
one-dimensional Fibonacci binary composite systems[J].
bility of pentamode mechanical metamaterials[J]. Applied
Physica B Physics of Condensed Matter, 2004, 344(1–4):
Physics Letters, 2012, 100(19): 191901.
391–397.
[3] 陈毅, 刘晓宁, 向平, 等. 五模材料及其水声调控研究 [J]. 力
[17] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic
学进展, 2016, 46(1): 382–434.
materials[J]. Science, 2000, 289(5485): 1734–1736.
Chen Yi, Liu Xiaoning, Xiang Ping, et al. Pentamode ma-
[18] 王育人, 缪旭弘, 姜恒, 等. 水下吸声机理与吸声材料 [J]. 力
terials and their underwater acoustic control[J]. Progress
学进展, 2017, 47(1): 92–121.
in Mechanics, 2016, 46(1): 382–434.
Wang Yuren, Miao Xuhong, Jiang Heng, et al. Review
[4] 王兆宏, 蔡成欣, 楚杨阳, 等. 用于声波调控的五模式超材
on underwater sound absorption materials and mecha-
料 [J]. 光电工程, 2017, 44(1): 34–48, 122.
nisms[J]. Advances in Mechanics, 2017, 47(1): 92–121.
Wang Zhaohong, Cai Chengxin, Chu Yangyang, et al.
[19] Zhao H, Liu Y, Wen J, et al. Tri-component phononic
Pentamode metamaterials for acoustic control[J]. Photo-
crystals for underwater anechoic coatings[J]. Physics Let-
electric Engineering, 2017, 44(1): 34–48, 122.
ters A, 2007, 367(3): 224–232.
[5] Norris A N. Acoustic cloaking theory[J]. Proceedings of
[20] 蔡成欣, 宁博, 周路人, 等. 局域共振型五模超构材料的低频
the Royal Society A: Mathematical, Physical and Engi-
声波调控方法 [J]. 中国材料进展, 2021, 40(1): 34–47, 21.
neering Sciences, 2008, 464(2097): 2411–2434.
Cai Chengxin, Ning Bo, Zhou Luren, et al. Tun-
[6] Norris A N, Nagy A J. Metal water: a metamaterial for
ing method of low-frequency acoustics for locally reso-
acoustic cloaking[J]. Proceedings of Phononics, Santa Fe,
nant pentamode metamaterials[J]. Materials China, 2021,
New Mexico, USA, 2011: 112–113.
40(1): 34–47, 21.
[7] Gokhale N H, Cipolla J L, Norris A N. Special trans-
[21] 潘宇雄, 徐峰祥, 牛小强. 双锥型五模材料低频声波调控及参
formations for pentamode acoustic cloaking[J]. The Jour-
数设计 [J]. 应用声学, 2022, 41(5): 765–775.
nal of the Acoustical Society of America, 2012, 132(4):
Pan Yuxiong, Xu Fengxiang, Niu Xiaoqiang. Low-
2932–2941.
frequency sound wave control and parameters design of bi-
[8] Layman C N, Naify C J, Martin T P, et al. Highly
conical pentamode materials[J]. Journal of Applied Acous-
anisotropic elements for acoustic pentamode applica-
tics, 2022, 41(5): 765–775.
tions[J]. Physical Review Letters, 2013, 111(2): 024302.
[22] 张晗, 杨军. 单模宽带的五模式超材料的仿真设计 [C]// 2018
[9] Aravantinos-Zafiris N, Sigalas M M, Economou E N. Elas-
年全国声学大会论文集 A. 物理声学 (含声超构材料), 2018.
todynamic behavior of the three dimensional layerby-layer