Page 28 - 《应用声学》2023年第6期
P. 28

1138                                                                                2023 年 11 月


                 (3) 与 3 种反正切解调方式相比,DCM 算法无                      [9] Koo K P, Tveten A B, Dandridge A. Passive stabilization
             论从实时性 (采样率要求、计算时间) 还是计算精度                             scheme for fiber interferometers using (3 × 3) fiber direc-
                                                                   tional couplers[J]. Applied Physics Letters, 1982, 41(7):
             的角度都表现都更逊色一些,但在采样率不足以满
                                                                   616–618.
             足反正切解调时不失为一个好的选择。当用硬件实                             [10] Brown D A. A symmetric 3 × 3 coupler based demodula-
             现积分、微分等步骤时或许可以实现实时解调。                                 tor for fiber optic interferometric sensors[C]. Fiber Optic
                                                                   and Laser Sensors IX. SPIE, 1991, 1584: 328.
                 (4) 从仿真结果及实验结果来看,借助了复平
                                                                [11] Todd M D, Johnson G A, Chang C C. Passive, light
             面的反正切解调方式 3 对采样率的要求最低,在应                              intensity-independent interferometric method for fibre
             用前可预先根据先验知识或水听器测试估算传感                                 Bragg grating interrogation[J]. Electronics Letters, 1999,
                                                                   35(22): 1970.
             器处声场的大致幅度,再根据所用光纤光栅传感器
                                                                [12] Chang T, Lang J, Sun W, et al. Phase compensation
             的灵敏度综合计算出所需采样率。                                       scheme for fiber-optic interferometric vibration demodu-
                 值得注意的是,借助复平面相位展开的方式 3                             lation[J]. IEEE Sensors Journal, 2017, 17(22): 7448–7454.
                                                                [13] 徐倩楠. 超弱光纤光栅 Fizeau 干涉水听器阵列有源反正切解
             需要输入实数,否则可能错误判断象限,造成解调结
                                                                   调方法研究 [D]. 武汉: 武汉理工大学, 2019.
             果的偏差甚至错误。当出于干涉仪相位的不稳定、                             [14] 崔杰, 刘亭亭, 肖灵, 等. 一种确定光纤传感器中 3 × 3 耦合器
             输出信号幅度差异等因素使用椭圆拟合时,由于拟                                输出信号相位差的新算法 [J]. 应用声学, 2008, 27(1): 36–41.
             合后的三路信号为复数信号,此时应选择其他方式                                Cui Jie, Liu Tingting, Xiao Ling, et al. A new algorithm
                                                                   to determine the phase difference of the output signal of a
             解调,如在实验时采样率加倍或后处理时插值后再                                3 × 3 fiber-optic coupler[J]. Journal of Applied Acoustics,
             使用方式2解调。                                              2008, 27(1): 36–41.
                                                                [15] 张华勇, 王利威, 施清平, 等. 光纤水听器时分复用系统通
                                                                   过 3×3 耦合器信号解调的一种新算法 [J]. 中国激光, 2011,
                            参 考     文   献                          38(5): 168–174.
                                                                   Zhang Huayong, Wang Liwei, Shi Qingping, et al. A new
              [1] 乔学光, 邵志华, 包维佳, 等. 光纤超声传感器及应用研究进                  demodulation method for time division multiplexing sys-
                 展 [J]. 物理学报, 2017, 66(7): 128–147.                tem of fiber-optic hydrophone using 3 × 3 coupler[J]. Chi-
                 Qiao Xueguang, Shao Zhihua, Bao Weijia, et al. Fiber-  nese Journal of Lasers, 2011, 38(5): 168–174.
                 optic ultrasonic sensors and applications[J]. Acta Physical  [16] 代欣学, 陈亚林, 贠晓辉, 等. 干涉型光纤水听器 3×3 反正切
                 Sinica, 2017, 66(7): 128–147.                     解调方法 [J]. 舰船科学技术, 2020, 42(3): 150–154.
              [2] Zhang F X, Zhang W T, Li F, et al. DFB fiber laser  Dai Xinxue, Chen Yalin, Yun Xiaohui, et al. Research on
                 hydrophone with band-pass response[J]. Optics Letters,  3×3 arctangent demodulation method for interferometric
                 2011, 36(22): 4320–4322.                          fiber hydrophone[J]. Ship Science and Technology, 2020,
              [3] Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted  42(3): 150–154.
                 fiber Bragg grating balanced sensing system[J]. Optics Ex-  [17] Qu R, Li D, Hu J, et al. Ellipse fitting demodulation sys-
                 press, 2012, 20(27): 28353–28362.                 tem of fiber optical hydrophones system based on 3 × 3
              [4] Liu Y M, Cai Q M, Lou J L. Research on FBG high tem-  coupler[C]. 2020 IEEE 5th Optoelectronics Global Con-
                 perature sensor used for strain monitoring[J]. Applied Me-  ference (OGC), 2020.
                 chanics and Materials, 2013, 341–342: 851–855.  [18] Zhang J, Huang W, Zhang W, et al. Improved DFB-FL
              [5] Tsuda H, Lee J R, Guan Y, et al. Investigation of fatigue  sensor interrogation with low harmonic distortion based
                 crack in stainless steel using a mobile fiber Bragg grat-  on extended Kalman filter[J]. Journal of Lightwave Tech-
                 ing ultrasonic sensor[J]. Optical Fiber Technology, 2007,  nology, 2021, 39(15): 5183–5190.
                 13(3): 209–214.                                [19] 陈家熠, 吴先梅, 吕文瀚, 等. 光纤超声传感系统 3 × 3 耦
              [6] Tsuda H. Ultrasound and damage detection in CFRP us-  合器输出信号的影响因素研究 [J]. 声学技术, 2018, 37(6):
                 ing fiber Bragg grating sensors[J]. Composites Science and  553–559.
                 Technology, 2006, 66(5): 676–683.                 Chen Jiayi, Wu Xianmei, Lyu Wenhan, et al. Research
              [7] Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg  on the factors affecting the output signal of 3 × 3 cou-
                 grating sensors toward structural health monitoring in  pler in optical fiber ultrasonic sensing system[J]. Technical
                 composite materials: challenges and solutions[J]. Sensors,  Acoustics, 2018, 37(6): 553–559.
                 2014, 14(4): 7394–7419.                        [20] 张冰. 一种采用 3 × 3 光纤耦合器的相位解调和双波长相位解
              [8] 郭银景, 王蕾, 苏铭玥, 等. 光纤水听器解调技术研究进展 [J].              卷绕方法研究 [D]. 北京: 北京邮电大学, 2018.
                 光谱学与光谱分析, 2022, 42(4): 1017–1021.              [21] 张楠. 基于外差检测的干涉型光纤水听器阵列系统若干关键
                 Guo Yinjing, Wang Lei, Su Mingyue, et al. A review of de-  技术研究 [D]. 长沙: 国防科学技术大学, 2013.
                 modulation technology of fiber optic hydrophone[J]. Spec-  [22] 廖延彪, 黎敏, 夏历. 光纤光学 [M]. 北京: 清华大学出版社,
                 troscopy and Spectral Analysis, 2022, 42(4): 1017–1021.  2021.
   23   24   25   26   27   28   29   30   31   32   33