Page 42 - 《应用声学》2024年第1期
P. 42
38 2024 年 1 月
对结果产生影响,假设水听器相对距离的真实值为 [6] 梁济仁, 黄开连. 驻波法测量声速 [J]. 广西民族大学学报 (自
2πf 然科学版), 2009, 15(3): 68–72, 101.
j (L c −L s )
L s ,测量值为 L c ,则 e jkL c / e jkL s = e c 0 , Liang Jiren, Huang Kailian. The speed of sound mea-
在实验中用卷尺对水听器的相对距离进行测量, sured by standing wave[J]. Journal of Guangxi University
卷尺的精度为 1 mm,同时实验在低频段进行测 for Nationalities(Natural Science Edition), 2009, 15(3):
68–72, 101.
量,即 f/c 0 较小,将实验频段中心频率代入估算
[7] Lafleur L D, Shields F D. Lowfrequency propagation
2π·2600
e j 1460 ·0.001 ≈ e j·0.011 ,相位的变化很小,说明 modes in a liquidfilled elastic tube waveguide[J]. The Jour-
nal of the Acoustical Society of America, 1995, 97(3):
水听器相对位置的测量误差对声速测量结果影响
1435–1445.
很小。 [8] Aristegui C, Lowe M J S, Cawley P. Guided waves on
fluid-filled pipes surrounded by different fluids[J]. Ultra-
4 结论 sonics, 2001, 39(5): 367–375.
[9] 李凤鸣, 邸惠芳, 吴胜举, 等. 驻波管测量声速的原理与方
法 [J]. 物理通报, 2013(12): 90–93.
本文提出了一种新的声管平面波声速测量方
Li Fengming, Di Huifang, Wu Shengju, et al. The prin-
法,利用 4个固定位置处的水听器,采用最小二乘的 ciple and method on sound velocity measurement with
方法,使得两组水听器分别得到的声管末端入射波 standing wave tube[J]. Physics Bulletin, 2013(12): 90–93.
[10] 闫磊. 水声材料的声学特性及声学测量研究 [D]. 北京: 北京
声压差值的平方最小的声速即为管内平面波声速。 航空航天大学, 2007: 37–60.
该方法具有很好的鲁棒性,在水听器灵敏度存在差 [11] 范真真, 金中坤, 王同庆. 应用改进的驻波法测量管道声
异时仍能够得到很好的结果;通过单频信号进行测 速 [C]//第十二届船舶水下噪声学术讨论会论文集, 2009:
359–364.
量,在每一频率点均可得到声速值;不受末端边界条
[12] 王文杰, 王同庆, 唐俊. 常压下基于频率响应测量声速的改进
件的影响,可以在任一种边界下进行测量;该方法只 方法 [J]. 哈尔滨工程大学学报, 2013, 34(12): 1509–1513.
与水听器两两间的距离有关,无需精确测量每个水 Wang Wenjie, Wang Tongqing, Tang Jun. Improved
method for sound velocity measurement with frequency
听器到边界的距离;实验中只需悬挂不同边界,同
response under atmospheric pressure[J]. Journal of Harbin
时采集 4个水听器的接收信号,实验操作简单、时间 Engineering University, 2013, 34(12): 1509–1513.
短,为管内声速的实时测量提供一个很好的方法。 [13] Mo Z, Song G, Hou K, et al. An iterative transfer ma-
trix approach for estimating the sound speed and attenua-
tion constant of air in a standing wave tube[J]. The Jour-
nal of the Acoustical Society of America, 2022, 151(6):
参 考 文 献 4016–4027.
[14] Baik K, Jiang J, Leighton T G. Acoustic attenuation,
[1] 陈建平, 何元安, 黄爱根. 水声材料声学参数及其声管测量方 phase and group velocities in liquid-filled pipes: theory,
法 [J]. 声学技术, 2015, 34(2): 109–114. experiment, and examples of water and mercury[J]. The
Chen Jianping, He Yuan’an, Huang Ai’gen. Summa- Journal of the Acoustical Society of America, 2010, 128(5):
rization of acoustic parameters of underwater materials 2610–2624.
and the acoustic tube measurement method[J]. Technical [15] Baik K, Jiang J, Leighton T G. Acoustic attenuation,
Acoustics, 2015, 34(2): 109–114. phase and group velocities in liquid-filled pipes III: non-
[2] Yan X W, Li J L, He Z G. Measurement of the echo reduc- axisymmetric propagation and circumferential modes in
tion for underwater acoustic passive materials by using the lossless conditions[J]. The Journal of the Acoustical Soci-
time reversal technique[J]. Chinese Journal of Acoustics, ety of America, 2013, 133(3): 1225–1236.
2016, 35(3): 309–320. [16] Li Z, Jing L W, Murch R. Propagation of monopole
[3] 何祚镛, 赵玉芳. 声学理论基础 [M]. 北京: 国防工业出版社, source excitedacoustic waves in a cylindrical high-density
1981: 353–403. polyethylene pipeline[J]. The Journal of the Acoustical So-
[4] 何世平, 汤渭霖, 刘涛, 等. 水声声管的壁厚和弹性对内部声 ciety of America, 2017, 142(6): 3564–3579.
场的影响 [J]. 船舶力学, 2003, 7(5): 97–103. [17] Li Z, Jing L W, Wang W J, et al. Measurement
He Shiping, Tang Weilin, Liu Tao, et al. Influence of and analysis of wave propagation in water-filled steel
thickness and elasticity of underwater acoustic tube to in- pipeline using iterative quadratic maximum likelihood al-
ternal acoustic field[J]. Journal of Ship Mechanics, 2003, gorithm[C]//Proceedings of 175th Meeting of the Acous-
7(5): 97–103. tical Society of America, 2018, 33(1): 045001.
[5] 声学 水声材料纵波声速和衰减系数的测量脉冲管法: GB/T [18] Vered Y, Gabai R, Bucher I. Waveguide dispersion curves
5266–2006[S]. identification at low-frequency using two actuators and