Page 121 - 201903
P. 121

第 38 卷 第 3 期         贾文龙等: 基于分形理论的驻波声场中颗粒团运动特性数值预测                                          403


             异最大。图 6 的结果还表明,颗粒团与等体积球颗                            [2] Zhang Y L, Cao F. Fine particulate matter (PM 2.5 ) in
             粒漂移系数的差异随分形维数的增加而减小,这是                                China at a city level[J]. Scientific Reports, 2015, 5: 14884.
             因为分形维数越大,颗粒团的结构越致密,颗粒团流                             [3] Ehrlich C, Noll G, Kalkoff W D, et al. PM 10 , PM 2.5 and
                                                                   PM 1.0 —Emissions from industrial plants—Results from
             体动力学半径与等体积球颗粒粒径差异越小,导致                                measurement programmes in Germany[J]. Atmospheric
             漂移速度差异缩小。此外,在原生颗粒粒径较小时                                Environment, 2007, 41(29): 6236–6254.
             (a 6 0.5 µm 时),漂移系数随分形维数的增加而减                       [4] 陈厚涛, 章汝心, 曹金祥, 等. 声波团聚脱除柴油机尾气中超
                                                                   细颗粒物的试验研究 [J]. 内燃机学报, 2009, 27(2): 160–165.
             小;在原生颗粒粒径较大时(a > 1.0 µm时),漂移系
                                                                   Chen Houtao, Zhang Ruxin, Cao Jinxiang, et al. Ex-
             数随分形维数的增加而增大。其原因是原生颗粒粒                                perimental study on acoustic agglomeration of ultra-
             径的增加导致颗粒团的流体动力学半径增加,当颗                                fine particles in diesel engine exhaust[J]. Transactions
                                                                   of CSICE(Chinese Society for Internal Combustion En-
             粒团的流体动力半径达到一定值时,颗粒团的定向
                                                                   gines), 2009, 27(2): 160–165.
             漂移运动受到抑制。                                           [5] Komarov S V, Yamamoto T, Uda T, et al. Acoustically
                                                                   controlled behavior of dust particles in high temperature
             3 结论                                                  gas atmosphere[J]. Iron and Steel Institute of Japan In-
                                                                   ternational, 2004, 44(2): 275–284.
                 基于分形理论的质量 -半径关系式和颗粒团                            [6] Hoffmann T L. Environmental implications of acous-
             无量纲流体动力学半径分形维数关系式,建立外                                 tic aerosol agglomeration[J]. Ultrasonics, 2000, 38(1–8):
                                                                   353–357.
             加声场作用下球形原生颗粒组成的颗粒团的动力
                                                                 [7] Yao Q, Li S Q, Xu H W, et al. Studies on formation
             学模型,利用四阶变步长 Runge-Kutta 算法和二阶                         and control of combustion particulate matter in China: a
             Adams 插值算法对颗粒团运动方程进行求解,将模                             review[J]. Energy, 2009, 34(9): 1296–1309.
                                                                 [8] Zhou D, Luo Z, Jiang J, et al. Experimental study on
             拟结果与实验结果进行对比,验证了数值模拟结果
                                                                   improving the efficiency of dust removers by using acous-
             的正确性。在此基础上,对颗粒团在驻波声场中的                                tic agglomeration as pretreatment[J]. Powder Technology,
             夹带系数、相位滞后和漂移系数随原生颗粒半径、                                2016, 289: 52–59.
             数目和排列情况的变化特性进行数值预测,并与等                              [9] Fan F, Zhang M, Peng Z, et al. Direct simulation Monte
                                                                   Carlo method for acoustic agglomeration under stand-
             体积球形颗粒进行比较。通过本文研究,得出以下
                                                                   ing wave condition[J]. Aerosol and Air Quality Research,
             结论:                                                   2017, 17(4): 1073–1083.
                 (1)对于两个原生颗粒组成的颗粒团,两个原生                         [10] Zu K, Yao Y, Cai M, et al. Modeling and experimen-
             颗粒的半径相差较大,颗粒团与等体积球形颗粒的                                tal study on acoustic agglomeration for dust particle re-
                                                                   moval[J]. Journal of Aerosol Science, 2017, 114: 62–76.
             运动特性差异很小;当两原生颗粒的半径相差不多
                                                                [11] Zhang G, Zhou T, Zhang L, et al. Improving acoustic
             时,颗粒团和等体积球形颗粒运动特性的差异变得                                agglomeration efficiency of coal-fired fly-ash particles by
             明显。                                                   addition of liquid binders[J]. Chemical Engineering Jour-
                                                                   nal, 2018, 334: 891–899.
                 (2) 分形维数一定时,随着原生颗粒数目的增
                                                                [12] Cleckler J, Elghobashi S, Liu F. On the motion of iner-
             多,颗粒团的夹带系数减小,相位滞后增加,漂移系                               tial particles by sound waves[J]. Physics of Fluids, 2012,
             数先增大后减小,颗粒团与等体积球形颗粒的动力                                24(3): 033301.
             学行为存在显著差异。                                         [13] 杨旭峰, 凡凤仙. 气温和颗粒密度对声场中颗粒动力学影响的
                                                                   数值模拟 [J]. 声学学报, 2014, 39(6): 745–751.
                 (3) 原生颗粒的排列情况决定了颗粒团的分形
                                                                   Yang Xufeng, Fan Fengxian. Numerical simulation of the
             维数,原生颗粒的排列趋于致密时,分形维数增加,                               effects of gas temperature and particle density on particle
             引起颗粒团的夹带系数增加,相位滞后减小,漂移系                               dynamics in acoustic field[J]. Acta Acustica, 2014, 39(6):
                                                                   745–751.
             数发生单调变化,颗粒团与等体积球形颗粒的运动
                                                                [14] González I, Elvira L, Hoffmann T L, et al. Numerical
             特性的差异趋于减小。
                                                                   study of the hydrodynamic interaction between aerosol
                                                                   particles due to the acoustic wake effect[J]. Acustica, 2001,
                            参 考     文   献                          87(4): 454460.
                                                                [15] Zhang G, Liu J, Wang J et al.  Numerical simulation
              [1] Xi J, Si X, Kim J W, et al. Simulation of airflow and  of acoustic wake effect in acoustic agglomeration under
                 aerosol deposition in the nasal cavity of a 5-year-old  Oseen flow condition[J]. Chinese Science Bulletin, 2012,
                 child[J]. Journal of Aerosol Science, 2011, 42(3): 156–173.  57(19): 2404–2412.
   116   117   118   119   120   121   122   123   124   125   126