Page 122 - 201903
P. 122
404 2019 年 5 月
[16] Fan F, Zhang M, Kim C N. Numerical simulation of inter- ciety of Electrical Engineering, 2007, 27(8): 1–4.
action between two PM 2.5 particles under acoustic trav- [25] 杨旭峰, 凡凤仙. 驻波声场中直链颗粒团聚体运动的数值模
elling wave conditions[C]. AIP Conference Proceedings, 拟 [J]. 动力工程学报, 2015, 35(4): 287–291, 340.
2013, 1542: 855–858. Yang Xufeng, Fan Fengxian. Numerical simulation on
[17] Maknickas A, Markauskas D, Kacianauskas R. Discrete motion of chain-like particle aggregates in standing wave
element simulating the hydrodynamic effects in acoustic acoustic field[J]. Journal of Chinese Society of Power En-
agglomeration of micron-sized particles[J]. Particulate Sci- gineering, 2015, 35(4): 287–291, 340.
ence and Technology, 2016, 34(4): 453–460. [26] Gmachowski L. Calculation of the fractal dimension of ag-
[18] Fan F, Yang X, Kim C N. Direct simulation of inhal- gregates[J]. Colloids and Surfaces A: Physicochemical and
able particle motion and collision in a standing wave
Engineering Aspects, 2002, 211(23): 197–203.
field[J]. Journal of Mechanical Science and Technology,
[27] Gmachowski L. Mass-radius relation for fractal aggre-
2013, 27(6): 1707–1712.
gates of polydisperse particles[J]. Colloids and Surfaces A:
[19] 姚刚, 沈湘林. 基于分形的超细颗粒声波团聚数值模拟 [J]. 东
Physicochemical and Engineering Aspects, 2003, 224(13):
南大学学报 (自然科学版), 2005, 35(1): 145–148.
45–52.
Yao Gang, Shen Xianglin. Numerical simulation of ul-
[28] Gruy F, Cugniet P. Experimental study of small aggre-
trafine particle acoustic agglomeration based on fractal
gate settling[J]. Journal of Colloid and Interface Science,
model[J]. Journal of Southeast University (Natural Sci-
2004, 272(2): 465–471.
ence Edition), 2005, 35(1): 145–148.
[29] Gmachowski L. Transport properties of fractal aggre-
[20] Sheng C, Shen X. Modelling of acoustic agglomera-
gates calculated by permeability[J]. Colloids and Sur-
tion processes using the direct simulation Monte Carlo
faces A: Physicochemical and Engineering Aspects, 2003,
method[J]. Journal of Aerosol Science, 2006, 37(1): 16–36.
215(1–3): 173–179.
[21] Sheng C, Shen X. Simulation of acoustic agglomeration
processes of poly-disperse solid particles[J]. Aerosol Sci- [30] Gmachowski L. Mobility radius of fractal aggregates grow-
ence and Technology, 2007, 41(1): 1–13. ing in the slip regime[J]. Journal of Aerosol Science, 2010,
[22] Markauskas D, Kaianauskas R, Maknickas A. Numerical 41(12): 1152–1158.
particle-based analysis of the effects responsible for acous- [31] 宋晓通, 凡凤仙. 驻波声场中可吸入颗粒物漂移的影响因素分
tic particle agglomeration[J]. Advanced Powder Technol- 析 [J]. 热能与动力工程, 2016, 31(1): 81–86, 135–136.
ogy, 2015, 26(3): 698–704. Song Xiaotong, Fan Fengxian. Analysis of the factors in-
[23] Zhang G, Zhou T, Zhang L, et al. A new multiple- fluencing the drift of inhalable particles in a standing wave
time-step three-dimensional discrete element modeling acoustic field[J]. Journal of Engineering for Thermal En-
of aerosol acoustic agglomeration[J]. Powder Technology, ergy and Power, 2016, 31(1): 81–86, 135–136.
2018, 323: 393–402. [32] Yang X F, Fan F X, Zhang M J. Numerical solution
[24] 赵兵, 姚刚, 杨林军, 等. 燃煤细颗粒和颗粒团动力学特性的 of dynamics of PM 10 subjected to standing-wave acous-
比较 [J]. 中国电机工程学报, 2007, 27(8): 1–4. tic field[C]. Particle Science and Engineering: Proceed-
Zhao Bing, Yao Gang, Yang Linjun, et al. Comparison of ings of UK-China International Particle Technology Fo-
dynamical behavior between fine particles and aggregates rum IV, Cambridge: The Royal Society of Chemistry,
from coal combustion[J]. Proceedings of the Chinese So- 2014: 107–121.