Page 122 - 201903
P. 122

404                                                                                  2019 年 5 月


             [16] Fan F, Zhang M, Kim C N. Numerical simulation of inter-  ciety of Electrical Engineering, 2007, 27(8): 1–4.
                 action between two PM 2.5 particles under acoustic trav-  [25] 杨旭峰, 凡凤仙. 驻波声场中直链颗粒团聚体运动的数值模
                 elling wave conditions[C]. AIP Conference Proceedings,  拟 [J]. 动力工程学报, 2015, 35(4): 287–291, 340.
                 2013, 1542: 855–858.                              Yang Xufeng, Fan Fengxian.  Numerical simulation on
             [17] Maknickas A, Markauskas D, Kacianauskas R. Discrete  motion of chain-like particle aggregates in standing wave
                 element simulating the hydrodynamic effects in acoustic  acoustic field[J]. Journal of Chinese Society of Power En-
                 agglomeration of micron-sized particles[J]. Particulate Sci-  gineering, 2015, 35(4): 287–291, 340.
                 ence and Technology, 2016, 34(4): 453–460.     [26] Gmachowski L. Calculation of the fractal dimension of ag-
             [18] Fan F, Yang X, Kim C N. Direct simulation of inhal-  gregates[J]. Colloids and Surfaces A: Physicochemical and
                 able particle motion and collision in a standing wave
                                                                   Engineering Aspects, 2002, 211(23): 197–203.
                 field[J]. Journal of Mechanical Science and Technology,
                                                                [27] Gmachowski L. Mass-radius relation for fractal aggre-
                 2013, 27(6): 1707–1712.
                                                                   gates of polydisperse particles[J]. Colloids and Surfaces A:
             [19] 姚刚, 沈湘林. 基于分形的超细颗粒声波团聚数值模拟 [J]. 东
                                                                   Physicochemical and Engineering Aspects, 2003, 224(13):
                 南大学学报 (自然科学版), 2005, 35(1): 145–148.
                                                                   45–52.
                 Yao Gang, Shen Xianglin. Numerical simulation of ul-
                                                                [28] Gruy F, Cugniet P. Experimental study of small aggre-
                 trafine particle acoustic agglomeration based on fractal
                                                                   gate settling[J]. Journal of Colloid and Interface Science,
                 model[J]. Journal of Southeast University (Natural Sci-
                                                                   2004, 272(2): 465–471.
                 ence Edition), 2005, 35(1): 145–148.
                                                                [29] Gmachowski L. Transport properties of fractal aggre-
             [20] Sheng C, Shen X. Modelling of acoustic agglomera-
                                                                   gates calculated by permeability[J]. Colloids and Sur-
                 tion processes using the direct simulation Monte Carlo
                                                                   faces A: Physicochemical and Engineering Aspects, 2003,
                 method[J]. Journal of Aerosol Science, 2006, 37(1): 16–36.
                                                                   215(1–3): 173–179.
             [21] Sheng C, Shen X. Simulation of acoustic agglomeration
                 processes of poly-disperse solid particles[J]. Aerosol Sci-  [30] Gmachowski L. Mobility radius of fractal aggregates grow-
                 ence and Technology, 2007, 41(1): 1–13.           ing in the slip regime[J]. Journal of Aerosol Science, 2010,
             [22] Markauskas D, Kaianauskas R, Maknickas A. Numerical  41(12): 1152–1158.
                 particle-based analysis of the effects responsible for acous-  [31] 宋晓通, 凡凤仙. 驻波声场中可吸入颗粒物漂移的影响因素分
                 tic particle agglomeration[J]. Advanced Powder Technol-  析 [J]. 热能与动力工程, 2016, 31(1): 81–86, 135–136.
                 ogy, 2015, 26(3): 698–704.                        Song Xiaotong, Fan Fengxian. Analysis of the factors in-
             [23] Zhang G, Zhou T, Zhang L, et al.  A new multiple-  fluencing the drift of inhalable particles in a standing wave
                 time-step three-dimensional discrete element modeling  acoustic field[J]. Journal of Engineering for Thermal En-
                 of aerosol acoustic agglomeration[J]. Powder Technology,  ergy and Power, 2016, 31(1): 81–86, 135–136.
                 2018, 323: 393–402.                            [32] Yang X F, Fan F X, Zhang M J. Numerical solution
             [24] 赵兵, 姚刚, 杨林军, 等. 燃煤细颗粒和颗粒团动力学特性的                  of dynamics of PM 10 subjected to standing-wave acous-
                 比较 [J]. 中国电机工程学报, 2007, 27(8): 1–4.               tic field[C]. Particle Science and Engineering: Proceed-
                 Zhao Bing, Yao Gang, Yang Linjun, et al. Comparison of  ings of UK-China International Particle Technology Fo-
                 dynamical behavior between fine particles and aggregates  rum IV, Cambridge: The Royal Society of Chemistry,
                 from coal combustion[J]. Proceedings of the Chinese So-  2014: 107–121.
   117   118   119   120   121   122   123   124   125   126   127